Numerical Linear Algebra Where? When? How?

Negin Bagherpour November 2020

Numerical Linear Algebra Group

Department of Mathematics, The University of Manchester https://nla-group.org/

Students

Click here to see the students listed in chronological order.

Name	School	Year	Descendants
Busovaca, Sead	University of Waterloo	1985	
Forsey, David	University of Waterloo	1990	
Mahdavi-Amiri, Nezameddin	The Johns Hopkins University	1981	49
Mutrie, Mark	University of Waterloo	1992	
Vermeulen, Alan	University of Waterloo	1995	

According to our current on-line database, Richard Bartels has 5 $\underline{\text{students}}$ and 54 $\underline{\text{descendants}}$.

We welcome any additional information.

If you have additional information or corrections regarding this mathematician, please use the <u>update form</u>. To submit students of this mathematician, please use the <u>new date form</u>, noting this mathematician's MGP ID of 46401 for the advisor ID.

Purdue University Numerical Linear Algebra Group (PUNLAG)
Department of Mathematics, Purdue University
https://www.math.purdue.edu/~kkloste/punlag.html

Dataset and Data Files
Images and Photographs
One-Hot Encoding
Linear Regression
Regularization
Principal Component Analysis
Singular-Value Decomposition
Latent Semantic Analysis
Recommender Systems
Deep Learning
Page Rank

Optimization

Modeling
Optimality Conditions
Active Set
Hessian Approximation
SQP Method
Interior point Methods
Nonlinear Matrix Equations
Specific Objectives (MR)

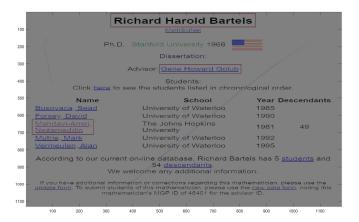
PDE

Finite Difference Method Finite Element Method System Dynamics

Dataset and Data Files

Price dataset

Date	Min_Price	Max_Price	Close
2020.10.31	65473	65722	65720
2020.11.01	64869	66125	65946
2020.11.02	65835	66358	66128


Sampling, variety of characteristics

	Scan improvement	Pain	Nausea	Edema
Dosage 1	+	+	++	+
Dosage 2	+	+	+	+
Dosage 3	+	+	+	-
Dosage 4	-	+	-	-

Images and Photographs

Processing

A=imread('golub.jpg') and image(A)

Advisor: Gene Howard Golub


Click here to see the students listed in chronological order.

Name	School	Year Desc	endants
Busovaca, Sead	University of Waterloo	1985	
Forsey, David	University of Waterloo	1990	
Mahdavi-Amiri, Nezameddin	The Johns Hopkins University	1981	49
Mutrie, Mark	University of Waterloo	1992	
Vermeulen, Alan	University of Waterloo	1995	

According to our current on-line database, Richard Bartels has 5 students and 54 descendants

We welcome any additional information.

If you have additional information or corrections regarding this mathematician, please use the update form. To submit students of this mathematician, please use the new data form, noting this mathematician's MGP ID of 46401 for the advisor ID.

Year Descendants Name 1985 University of Waterloo Busovaca, Sead University of Waterloo Forsey, David 1990 Mahdavi-Amiri. The Johns Hopkins 1981 49 Nezameddin University Mutrie, Mark University of Waterloo 1992

1995

University of Waterloo According to our current on-line database, Richard Bartels has 5 students and 54 descendants.

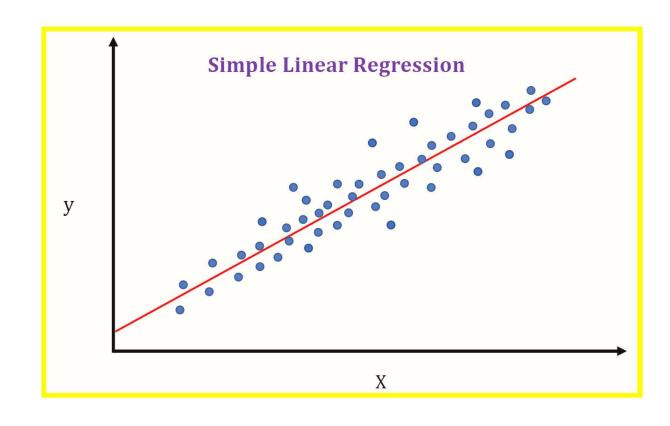
Vermeulen, Alan

We welcome any additional information.

If you have additional information or corrections regarding this mathematician, please use the update form. To submit students of this mathematician, please use the new data form, noting this mathematician's MGP ID of 46401 for the advisor ID

One-Hot Encoding

```
red
green
blue
```


```
red green blue
```

```
1 0 0
0 1 0
0 0 1
```

• Linear Regression

Python codes

2-dimentional form Y = AX

Principal Component Analysis

Model order reduction Eigenvalues decomposition

• Singular-Value Decomposition

Model order reduction Feature selection Visualization Noise reduction

Latent Semantic Analysis

Natural language processing

Sparse matrix

Columns: words

Rows: address

• Recommender Systems

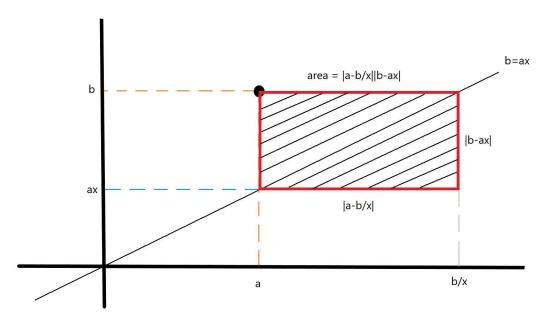
Product recommendation based on previous choices

Selection similarity between people

• Deep Learning

Design of neural networks

Page Rank


$$PR(p_i) = rac{1-d}{N} + d\sum_{p_j \in M(p_i)} rac{PR(p_j)}{L(p_j)}$$

$$\mathbf{R} = egin{bmatrix} (1-d)/N \ (1-d)/N \ dots \ (1-d)/N \end{bmatrix} + d egin{bmatrix} \ell(p_1,p_1) & \ell(p_1,p_2) & \cdots & \ell(p_1,p_N) \ \ell(p_2,p_1) & \ddots & dots \ dots & \ell(p_i,p_j) & dots \ \ell(p_N,p_1) & \cdots & \ell(p_N,p_N) \end{bmatrix} \mathbf{R}$$

Modeling

$$\min tr(DX - T)^T(DX - T)$$
$$X > 0$$

$$XAX = B$$

$$area = \frac{(ax - b)^2}{x}, x > 0$$

Modeling

Inverse approximation

$$\min ||AX - I||^2$$

Steepest descent and BB step length

Optimality conditions

minimize
$$f_0(\mathbf{z})$$

subject to $f_i(\mathbf{z}) \leq 0, \quad i=1,\cdots,m$
 $h_i(\mathbf{z})=0, \quad i=1,\cdots,p$
 $\|z-x\| \leq R$

$$u_0 \nabla f_0(\bar{x}) + \sum_{i=1}^m u_i \nabla f_i(\bar{x}) + \sum_{i=1}^p v_i \nabla h_i(\bar{x}) = 0$$
 $(u_0, u) \succeq 0, \quad (u_0, u, v) \neq 0$
 $u_i f_i(\bar{x}) = 0, \quad i = 1, \dots, m$

Second order necessary condition

$$\nabla f(\bar{\mathbf{x}}) = \mathbf{0}$$
 and $\nabla^2 f(\bar{\mathbf{x}}) \succeq \mathbf{0}$

KKT sufficient conditions (convex)

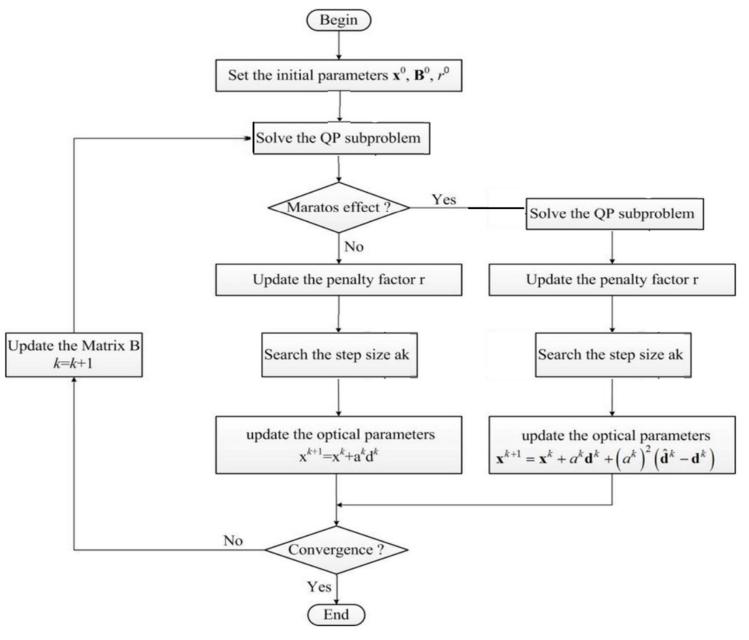
$$abla f_0(ar{x}) + \sum_{i=1}^m u_i
abla f_i(ar{x}) + \sum_{i=1}^p v_i
abla h_i(ar{x}) = 0$$
 $u \succeq 0, \quad u_i f_i(ar{x}) = 0, \quad i = 1, \dots, m$

Active set

$$\min f(x) + \rho x_{n+1}
x \in \mathbb{R}^{n+1} : \frac{g_j(x) = 0}{g_j(x) + x_{n+1} \ge 0}, \quad j = 1, \dots, m_e,
g_j(x) + x_{n+1} \ge 0, \quad j = m_e + 1, \dots, m,
x_{n+1} \ge 0$$

$$\min \ \frac{1}{2}d^{T}B_{k}d + \nabla f(x_{k})^{T}d + \frac{1}{2}\sigma_{k}^{2}\delta^{2} ,$$

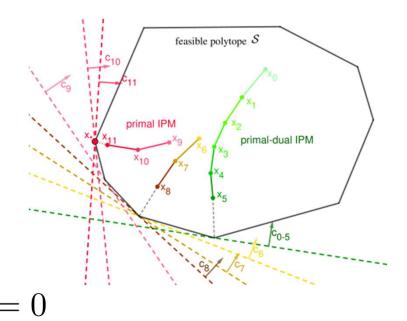
$$d \in \mathbb{R}^{n}, \delta \in \mathbb{R}: \ \nabla g_{j}(x_{k})^{T}d + (1 - \delta)g_{j}(x_{k}) \ \left\{ \stackrel{=}{\geq} \right\} \ 0 , \ j \in J_{k}^{\star} ,$$


$$\nabla g_{j}(x_{j(k)})^{T}d + g_{j}(x_{k}) \geq 0 , \ j \in \overline{K}_{k}^{\star}$$

$$J_{k}^{\star} \doteq \{1, \dots, m_{e}\} \cup \{j : m_{e} < j \leq m, \ g_{j}(x_{k}) < \epsilon \text{ or } v_{j}^{(k)} > 0\}$$

Hessian Approximation - BFGS

$$\begin{array}{rcl} x^{(k+1)} & = & x^{(k)} - H_k^{-1} \nabla f(x^{(k)}), \\ s^{(k)} & = & x^{(k+1)} - x^{(k)}, \\ y^{(k)} & = & \nabla f(x^{(k+1)}) - \nabla f(x^{(k)}), \end{array} \qquad \begin{array}{rcl} H_{\mathcal{S}} & = & \mathcal{Y} \\ H_{k+1} & = & H_k - \frac{H_k s^{(k)} (s^{(k)})^T H_k}{s^{(k)} \cdot H_k s^{(k)}} + \frac{y^{(k)} (y^{(k)})^T}{y^{(k)} \cdot s^{(k)}} \end{array}$$


• SQP

Interior Point Method

Perturbed KKT

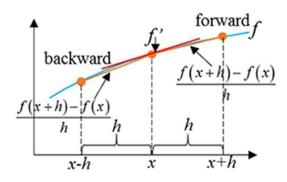
$$r(x, u, v) = \begin{pmatrix} \nabla f(x) + Dh(x)^T u + A^T v \\ -\text{diag}(u)h(x) - (1/t)1 \\ Ax - b \end{pmatrix} = 0$$

$$h(x) = \begin{pmatrix} h_1(x) \\ \dots \\ h_m(x) \end{pmatrix}, \quad Dh(x) = \begin{bmatrix} \nabla h_1(x)^T \\ \dots \\ \nabla h_m(x)^T \end{bmatrix}$$

Nonlinear matrix equation

$$X-\sum_{i=1}^{m}A_{i}^{\star}F\left(X
ight) A_{i}=Q,$$

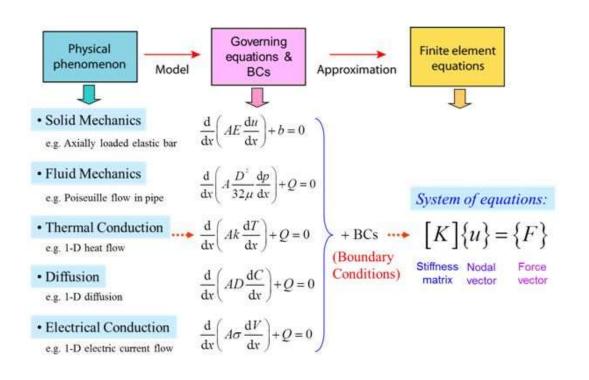
Linearization
Newton approach
PDEIV approach

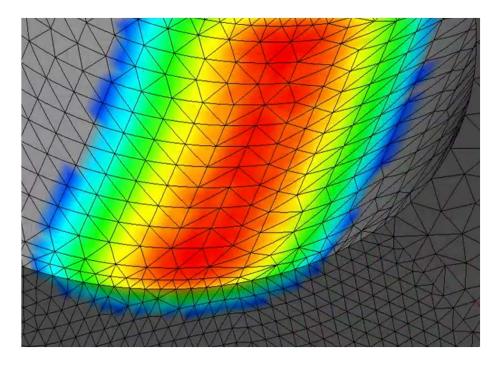

• Minimum rank

$$||AX - B|| < \delta$$

Control
Stability
Graph theory

PDE


• FDM

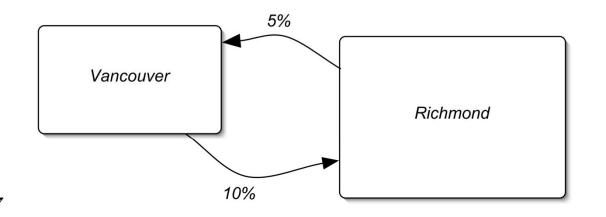


$$egin{aligned} f_x(x,y) &pprox rac{f(x+h,y) - f(x-h,y)}{2h} \ f_y(x,y) &pprox rac{f(x,y+k) - f(x,y-k)}{2k} \ f_{xx}(x,y) &pprox rac{f(x+h,y) - 2f(x,y) + f(x-h,y)}{h^2} \ f_{yy}(x,y) &pprox rac{f(x,y+k) - 2f(x,y) + f(x,y-k)}{k^2} \ f_{xy}(x,y) &pprox rac{f(x+h,y+k) - f(x+h,y-k) - f(x-h,y+k) + f(x-h,y-k)}{4hk} \ \end{aligned}$$

PDE

• FEM

PDE


• System dynamics

$$v_{2008} = .9 v_{2007} + .05 r_{2007}$$

$$r_{2008} = .1 v_{2007} + .95 r_{2007}$$

$$v_{n+1} = .9 v_n + .05 r_n$$

$$r_{n+1} = .1 v_n + .95 r_n$$

$$\begin{pmatrix} v_{n+1} \\ r_{n+1} \end{pmatrix} = \begin{pmatrix} .9 v_n + .05 r_n \\ .1 v_n + .95 r_n \end{pmatrix} = \begin{pmatrix} .9 & .05 \\ .1 & .95 \end{pmatrix} \begin{pmatrix} v_n \\ r_n \end{pmatrix}$$

$$\dot{X} = AX$$

Thank U