

تحویل اصلی ۱۹ آذر ۱۴۰۲	مقدمهای بر رمزنگاری
تمرین: سری ۳	
تحویل نهایی: ۲۶ آذر	مدرّس : دکتر شهرام خزائی

دانشكده علوم رياضي

- Upload your answers on courseware with the name: StudentNumber.pdf
- Upload a PDF file. Image and zip formats are not accepted.
- Similar answers will not be graded.
- NO answers will be accepted via e-mail.
- You can't upload files bigger than 1 Mb, so you'd better type.
- Deadline time is always at 23:55 and will not be extended.
- You should submit your answers before soft deadline.
- You will lose 5 percent for each day delay if you submit within a week after soft deadline.
- You can not submit any time after hard deadline.
- For any question contact Sina Ghasemi Nezhad via the Telegram ID @Sina_Qane or the email sina.ghaseminejad@gmail.com.

Problem 1

Let $\{p_k\}_{k \in \{0,1\}^*}$ be a pseudorandom permutation collection, where for $k \in \{0,1\}^n$, p_k is a permutation over $\{0,1\}^m$.

- 1. Consider the following encryption scheme $(E, D) : E_k(x) = p_k(x), D_k(y) = p_k^{-1}(y)$. Prove that this scheme is not a CPA-secure encryption.
- 2. Consider the following scheme (E, D) that encrypts m/2-bit messages in the following way: on input $x \in \{0, 1\}^{m/2}$, E_k chooses random $r \leftarrow_R \{0, 1\}^{m/2}$ and outputs $p_k(x, r)$ (where comma denotes concatenation), on input $y \in \{0, 1\}^m$, D_k computes $(x, r) = p_k^{-1}(y)$ and outputs x. Prove that (E, D) is a CPA-secure encryption scheme.

Problem 2

Show that CBC-MAC is not a secure MAC when an adversary can obtain authorization tags on massages of different lengths.

Problem 3

Let (Gen; Mac; Ver) be a secure MAC defined with key, message and tag spaces K, M and T where $M = \{0, 1\}^n$ and $T = \{0, 1\}^{128}$. Which of the following is a secure MAC? provide a brief proof for your answer.

- 1. $\operatorname{Mac}'(k,m) = \operatorname{Mac}(k,m||m)$ $\operatorname{Ver}'(k,m,t) = \operatorname{Ver}(k,m||m,t)$
- 2. $\operatorname{Mac}'(k,m) = \langle \operatorname{Mac}(k,m), \operatorname{Mac}(k,0^n) \rangle$ $\operatorname{Ver}'(k,m,\langle t_1,t_2 \rangle) = \operatorname{Ver}(k,m,t_1) \wedge \operatorname{Ver}(k,0^n,t_2)$
- 3. $\operatorname{Mac}'(k_1||k_2,m) = \langle \operatorname{Mac}(k_1,m), \operatorname{Mac}(k_2,m) \rangle$ $\operatorname{Ver}'(k_1||k_2,m, \langle t_1, t_2 \rangle) = \operatorname{Ver}(k_1,m,t_1) \wedge \operatorname{Ver}(k_2,m,t_2)$
- 4. $\operatorname{Mac}'(k,m) = \operatorname{Mac}(k,m)$ $\operatorname{Ver}'(k,m,t) = \operatorname{Ver}(k,m,t) \lor \operatorname{Ver}(k,m \oplus 1^n,t)$

Problem 4

Let h be a collision-resistant hash-function.

1. Consider

$$h_s^0(x) = \begin{cases} h_s(x) || 1 & \text{if } x_1 = 0\\ 0^{|h_s(x)|+1} & \text{otherwise} \end{cases}$$
$$h_s^1(x) = \begin{cases} h_s(x) || 1 & \text{if } x_1 = 1\\ 0^{|h_s(x)|+1} & \text{otherwise} \end{cases}$$

Prove that $\hat{h}_s(x) = h_s^0(x) ||h_s^1(x)$ is collision-resistant.

2. Now let

$$h_s^a(x) = h_s(x)_1 \dots h_s(x)_{\lceil \frac{|h_s(x)|}{2} \rceil}$$
$$h_s^b(x) = h_s(x)_{\lceil \frac{|h_s(x)|}{2} \rceil+1} \dots h_s(x)_{|h_s(x)|}$$

where the *i*-th bit of a string x is denoted by x_i . Prove or disprove that at least one of h_s^a and h_s^b is collision resistant.

3. Answer part 2 in the case that the output of h_s^a and h_s^b is equal for every input x. Prove your answer.

Problem 5

- 1. Suppose we are given two hash functions $H_1, H_2 : \{0, 1\}^* \to \{0, 1\}^n$ and are told that both hash functions are collision resistant. We, however, do not quite trust these claims. Our goal is to build a hash function $H_{12} : \{0, 1\}^* \to \{0, 1\}^m$ that is collision resistant assuming at least one of H_1, H_2 are collision resistant. Give the best construction you can for H_{12} and prove that a collision finder for your H_{12} can be used to find collisions for both H_1 and H_2 (this will prove collision resistance of H_{12} assuming one of H_1 or H_2 is collision resistant). Note that a straight forward construction for H_{12} is fine, as long as you prove security in the sense above.
- 2. Same questions as part 1 for Message Authentication Codes (MACs). Prove that an existential forger under a chosen message attack on your MAC_{12} gives an existential forger under a chosen message attack for both MAC_1 and MAC_2 . Again, a straight forward construction is acceptable, as long as you prove security. The proof of security here is a bit more involved than in part 1.