دانشیكله علوم رباضى

$$
\begin{aligned}
& \text { تحويل اصلى ه آبان ب• • } \\
& \text { رمز نگارى } \\
& \text { تمرين : سرى } \\
& \text { تحويل نهايیى } \\
& \text { مدرّس : دكتر شهرام خزائى }
\end{aligned}
$$

- Upload your answers on courseware with the name: StudentNumber.pdf
- Upload a PDF file. Image and zip formats are not accepted.
- Similar answers will not be graded.
- NO answers will be accepted via e-mail.
- You can't upload files bigger than 1 Mb , so you'd better type.
- Deadline time is always at $23: 55$ and will not be extended.
- You should submit your answers before soft deadline.
- You will lose 5 percent for each day delay if you submit within a week after soft deadline.
- You can not submit any time after hard deadline.
- For any question contact Parsa Reisi via parsareisi1024q@gmail.com.

Problem 1

We say that (Gen, Enc, Dec) with message and ciphertext spaces \mathcal{M} and \mathcal{C} is a statistically ε-indistinguishable secure $S K E$ if for every $m_{0}, m_{1} \in \mathcal{M}$ and every $T \subseteq \mathcal{C}$,

$$
\left|\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m_{0}\right) \in T\right]-\operatorname{Pr}\left[\operatorname{Enc}_{K}\left(m_{1}\right) \in T\right]\right| \leq \varepsilon,
$$

where the probabilities are taken over $K \stackrel{R}{\leftarrow}$ Gen() and the coin tosses of Enc.

1. Show that statistical 0-indistinguishability is equivalent to perfect security.
2. In analogy with adversarial indistinguishability, we say that an encryption scheme (Gen, Enc, Dec) satisfies ε-adversarial indistinguishability if every adversary \mathcal{A} succeeds at the adversarial indistinguishability experiment on page 31 in the textbook 1, with probability at most $\frac{1+\varepsilon}{2}$:
(a) \mathcal{A} outputs a pair of messages $m_{0}, m_{1} \in \mathcal{M}$.
(b) A random key $K \stackrel{R}{\leftarrow}$ Gen() and a bit $b \stackrel{R}{\leftarrow}\{0,1\}$ are sampled. The ciphertext $c \stackrel{R}{\leftarrow} \operatorname{Enc}_{K}\left(m_{b}\right)$ is computed and given to \mathcal{A}.
(c) \mathcal{A} outputs a bit b^{\prime} and succeeds iff $b=b^{\prime}$.

Show that if the encryption scheme (Gen, Enc, Dec) is statistically ε-indistinguishable, then it also satisfies ε-adversarial indistinguishability.

For the next three parts, suppose (Gen, Enc, Dec) is statistically ε-indistinguishable for message space \mathcal{M}. Below you will prove that the number of keys must be at least $(1-\varepsilon) \cdot|\mathcal{M}|$, therefore statistical security does not help much to overcome the limitations of perfect secrecy.
2. Call a ciphertext c decryptable to $m \in \mathcal{M}$ if there is a key K such that $\operatorname{Dec}_{K}(c)=$ m. Prove that for every pair of messages $m, m^{\prime} \in \mathcal{M}$,

$$
\operatorname{Pr}\left[\operatorname{Enc}_{K}(m) \text { is decryptable to } m^{\prime}\right] \geq 1-\varepsilon
$$

where the probability is taken over $K \stackrel{R}{\leftarrow} \operatorname{Gen}()$ and the coin tosses of Enc.
${ }^{1}$ Jonathan Katz, Yehuda Lindell: Introduction to Modern Cryptography, Third Edition.
r- - rرى
3. Show that for every message $m \in \mathcal{M}$,

$$
\mathrm{E}\left[\#\left\{m^{\prime}: \operatorname{Enc}_{K}(m) \text { is decryptable to } m^{\prime}\right\}\right] \geq(1-\varepsilon) \cdot|\mathcal{M}|,
$$

where E represents the expected value function and again the probability is taken over K and the coin tosses of Enc. (Hint: for each m^{\prime}, define a random variable $X_{m^{\prime}}$ that equals 1 if $\operatorname{Enc}_{K}(m)$ is decryptable to m^{\prime}, and equals 0 otherwise.)
4. Conclude that the number of keys must be at least $(1-\varepsilon) \cdot|\mathcal{M}|$.

Problem 2

1. For each of the following encryption schemes, describe the decryption algorithm and state whether the scheme is perfectly secret. Justify your answer in each case.
(a) ("Two-time pad"). The plaintext is the set of all ℓ-bit strings. The key generation algorithm outputs a uniformly random key from $\{0,1\}^{\ell / 2}$. To encrypt a message $m=m_{1} \ldots m_{\ell}$ under the key $k=k_{1} \ldots k_{\ell / 2}$, we output $\left(m_{1} \oplus k_{1}, \cdots, m_{\ell / 2} \oplus k_{\ell / 2}, m_{\ell / 2+1} \oplus k_{1}, \cdots, m_{\ell} \oplus k_{\ell / 2}\right)$.
(b) An encryption scheme whose plaintext space is $\mathcal{M}=\left\{m \in\{0,1\}^{\ell} \mid\right.$ the last bit of m is 0$\}$ and key generation algorithm chooses a uniform key from the key space $\{0,1\}^{\ell-1}$. The encryption of a message $m \in\{0,1\}^{\ell-1}$ under the key $k \in$ $\{0,1\}^{\ell}$ is $E_{k}(m)=m \oplus(k \| 0)$.
(c) Messages are ℓ bit strings. The key is a random permutation on $\{1, \ldots, 2 \ell\}$. To encrypt a message m under the key k, write down m, followed by \bar{m}, the bitwise complement of m. Then permute the bits of the resulting 2ℓ-bit string $m \| \bar{m}$ according to the permutation described by k.
(d) Same as part (c) except we replace \bar{m} with 0^{ℓ} (here 0^{ℓ} denotes the sequence of ℓ zeros). That is, we apply the permutation to the 2ℓ-bit string $m \| 0^{\ell}$.
2. Give examples (with proofs) for
(a) A scheme such that is possible to efficiently recover 90% of the bits of the key given the ciphertext, and yet it is still perfectly secure. Do you think there is a security issue in using such a scheme in practice?
r - ا
(b) Given an encryption of any message, an adversary learns nothing about the secret key, but the scheme is completely broken (e.g., given the ciphertext, an adversary can completely recover the plaintext).

Problem 3

Suppose G is a PRG with input length λ and output length 3λ. Which of the following are PRGs? (Prove or give a counter-example for your answers)

1. $\mathrm{G}_{a}(s)=\mathrm{G}(s)_{[1,2 \lambda]}$. That is, run G , delete the last λ bits, and output the first 2λ.
2. $\mathrm{G}_{b}(r, s)=(r, \mathrm{G}(s))$. Here, r, s are λ bits, and G_{b} has input length 2λ and output length 4λ.
3. $\mathrm{G}_{c}(s)=(r, \mathrm{G}(s))$. Here, r, s are λ bits, and G is a probabilistic algorithm that chooses a fresh r for each invocation.
4. $\mathrm{G}_{d}(s)=(s, \mathrm{G}(s))$.
5. $\mathrm{G}_{e}(s)=\mathrm{G}\left(\mathrm{G}_{0}(s)\right), \mathrm{G}\left(\mathrm{G}_{1}(s)\right), \mathrm{G}\left(\mathrm{G}_{2}(s)\right)$. Here, G_{0} represents the first λ bits of the output of $\mathrm{G}(s), \mathrm{G}_{1}$ the second λ bits, and G_{2} the final λ bits

Problem 4

Let G be a pseudorandom generator with expansion function ℓ. Show that $\mathrm{G}\left(U_{n}\right)$ has a sequence of at least $2 \log _{2} \ell(n)$ consecutive ones with low probability (i.e. tending to 0 as $n \rightarrow \infty)$. Can this probability be negligible?

