



| تحويل اصلى ۵ آبان ۱۴۰۲ | رمز نگاری                |
|------------------------|--------------------------|
| تمرین : سری ۱          |                          |
| تحويل نهايي ١٢ آبان    | مدرّس : دكتر شهرام خزائي |

دانشکدهی علوم ریاضی

- Upload your answers on courseware with the name: StudentNumber.pdf
- Upload a PDF file. Image and zip formats are not accepted.
- Similar answers will not be graded.
- NO answers will be accepted via e-mail.
- You can't upload files bigger than 1 Mb, so you'd better type.
- Deadline time is always at 23:55 and will not be extended.
- You should submit your answers before soft deadline.
- You will lose 5 percent for each day delay if you submit within a week after soft deadline.
- You can not submit any time after hard deadline.
- For any question contact Parsa Reisi via parsareisi1024q@gmail.com.

## Problem 1

We say that (Gen, Enc, Dec) with message and ciphertext spaces  $\mathcal{M}$  and  $\mathcal{C}$  is a *statistically*  $\varepsilon$ -indistinguishable secure SKE if for every  $m_0, m_1 \in \mathcal{M}$  and every  $T \subseteq \mathcal{C}$ ,

 $|\Pr[\mathsf{Enc}_K(m_0) \in T] - \Pr[\mathsf{Enc}_K(m_1) \in T]| \le \varepsilon,$ 

where the probabilities are taken over  $K \xleftarrow{R} \mathsf{Gen}()$  and the coin tosses of Enc.

- 1. Show that statistical 0-indistinguishability is equivalent to perfect security.
- 2. In analogy with adversarial indistinguishability, we say that an encryption scheme (Gen, Enc, Dec) satisfies  $\varepsilon$ -adversarial indistinguishability if every adversary  $\mathcal{A}$  succeeds at the adversarial indistinguishability experiment on page 31 in the textbook<sup>1</sup>, with probability at most  $\frac{1+\varepsilon}{2}$ :
  - (a)  $\mathcal{A}$  outputs a pair of messages  $m_0, m_1 \in \mathcal{M}$ .
  - (b) A random key  $K \stackrel{R}{\leftarrow} \text{Gen}()$  and a bit  $b \stackrel{R}{\leftarrow} \{0,1\}$  are sampled. The ciphertext  $c \stackrel{R}{\leftarrow} \text{Enc}_K(m_b)$  is computed and given to  $\mathcal{A}$ .
  - (c)  $\mathcal{A}$  outputs a bit b' and succeeds iff b = b'.

Show that if the encryption scheme (Gen, Enc, Dec) is statistically  $\varepsilon$ -indistinguishable, then it also satisfies  $\varepsilon$ -adversarial indistinguishability.

For the next three parts, suppose (Gen, Enc, Dec) is statistically  $\varepsilon$ -indistinguishable for message space  $\mathcal{M}$ . Below you will prove that the number of keys must be at least  $(1-\varepsilon)\cdot|\mathcal{M}|$ , therefore statistical security does not help much to overcome the limitations of perfect secrecy.

2. Call a ciphertext c decryptable to  $m \in \mathcal{M}$  if there is a key K such that  $\mathsf{Dec}_K(c) = m$ . Prove that for every pair of messages  $m, m' \in \mathcal{M}$ ,

$$\Pr[\mathsf{Enc}_K(m) \text{ is decryptable to } m'] \ge 1 - \varepsilon,$$

where the probability is taken over  $K \xleftarrow{R} \mathsf{Gen}()$  and the coin tosses of Enc.

<sup>1</sup>Jonathan Katz, Yehuda Lindell: Introduction to Modern Cryptography, Third Edition.

سری ۱ – ۲

3. Show that for every message  $m \in \mathcal{M}$ ,

 $\mathbb{E}\left[\#\{m': \mathsf{Enc}_K(m) \text{ is decryptable to } m'\}\right] \ge (1-\varepsilon) \cdot |\mathcal{M}|,$ 

where E represents the expected value function and again the probability is taken over K and the coin tosses of Enc. (Hint: for each m', define a random variable  $X_{m'}$  that equals 1 if  $\text{Enc}_K(m)$  is decryptable to m', and equals 0 otherwise.)

4. Conclude that the number of keys must be at least  $(1 - \varepsilon) \cdot |\mathcal{M}|$ .

## Problem 2

- 1. For each of the following encryption schemes, describe the decryption algorithm and state whether the scheme is perfectly secret. Justify your answer in each case.
  - (a) ("Two-time pad"). The plaintext is the set of all  $\ell$ -bit strings. The key generation algorithm outputs a uniformly random key from  $\{0,1\}^{\ell/2}$ . To encrypt a message  $m = m_1 \dots m_\ell$  under the key  $k = k_1 \dots k_{\ell/2}$ , we output  $(m_1 \oplus k_1, \dots, m_{\ell/2} \oplus k_{\ell/2}, m_{\ell/2+1} \oplus k_1, \dots, m_\ell \oplus k_{\ell/2})$ .
  - (b) An encryption scheme whose plaintext space is  $\mathcal{M} = \{m \in \{0,1\}^{\ell} | \text{ the last bit of } m \text{ is } 0\}$ and key generation algorithm chooses a uniform key from the key space  $\{0,1\}^{\ell-1}$ . The encryption of a message  $m \in \{0,1\}^{\ell-1}$  under the key  $k \in \{0,1\}^{\ell}$  is  $E_k(m) = m \oplus (k \parallel 0)$ .
  - (c) Messages are  $\ell$  bit strings. The key is a random permutation on  $\{1, \ldots, 2\ell\}$ . To encrypt a message m under the key k, write down m, followed by  $\overline{m}$ , the bitwise complement of m. Then permute the bits of the resulting  $2\ell$ -bit string  $m \parallel \overline{m}$  according to the permutation described by k.
  - (d) Same as part (c) except we replace  $\overline{m}$  with  $0^{\ell}$  (here  $0^{\ell}$  denotes the sequence of  $\ell$  zeros). That is, we apply the permutation to the  $2\ell$ -bit string  $m \parallel 0^{\ell}$ .
- 2. Give examples (with proofs) for
  - (a) A scheme such that is possible to efficiently recover 90% of the bits of the key given the ciphertext, and yet it is still perfectly secure. Do you think there is a security issue in using such a scheme in practice?

سری ۱ – ۳

(b) Given an encryption of any message, an adversary learns *nothing* about the secret key, but the scheme is completely broken (e.g., given the ciphertext, an adversary can completely recover the plaintext).

## Problem 3

Suppose G is a PRG with input length  $\lambda$  and output length  $3\lambda$ . Which of the following are PRGs? (Prove or give a counter-example for your answers)

- 1.  $G_a(s) = G(s)_{[1,2\lambda]}$ . That is, run G, delete the last  $\lambda$  bits, and output the first  $2\lambda$ .
- 2.  $G_b(r,s) = (r, G(s))$ . Here, r, s are  $\lambda$  bits, and  $G_b$  has input length  $2\lambda$  and output length  $4\lambda$ .
- 3.  $G_c(s) = (r, G(s))$ . Here, r, s are  $\lambda$  bits, and G is a probabilistic algorithm that chooses a fresh r for each invocation.
- 4.  $\mathsf{G}_d(s) = (s, \mathsf{G}(s)).$
- 5.  $G_e(s) = G(G_0(s)), G(G_1(s)), G(G_2(s))$ . Here,  $G_0$  represents the first  $\lambda$  bits of the output of G(s),  $G_1$  the second  $\lambda$  bits, and  $G_2$  the final  $\lambda$  bits

## Problem 4

Let G be a pseudorandom generator with expansion function  $\ell$ . Show that  $G(U_n)$  has a sequence of at least  $2 \log_2 \ell(n)$  consecutive ones with low probability (i.e. tending to 0 as  $n \to \infty$ ). Can this probability be negligible?