

- Upload your answers on courseware with the name: StudentNumber.pdf
- Upload a PDF file. Image and zip formats are not accepted.
- Similar answers will not be graded.
- NO answers will be accepted via e-mail.
- You should submit your answers before soft deadline.
- You will lose 5 percent for each day delay if you submit within a week after soft deadline.
- You can not submit any time after hard deadline.
- For any question contact Arash ashoori via @Arash0330.

Problem 1

Suppose X, Y are two probability distributions on the finite space Ω. The statistical distance between them is:

$$
\Delta(X, Y)=\frac{1}{2} \sum_{w \in \Omega}|\operatorname{Pr}(X=w)-\operatorname{Pr}(Y=w)|
$$

a) show this is a metric.
b) show that:

$$
\Delta(X, Y)=\max _{A \subset \Omega}|\operatorname{Pr}(X \in A)-\operatorname{Pr}(Y \in A)|
$$

c) Show that the most advantage possible for an attacker to distinguish between distributions X, Y equals $\Delta(X, Y)$.

Problem 2

a) Let M and K be arbitrary finite message and key spaces. Denote their sizes by $|M|$ and $|K|$, respectively. Show that there exists a symmetric key encryption system on these spaces such that the advantage of any attacker could not be more than $\max \left(\frac{|M|}{|k|}-1,0\right)$.
b) Suppose the message space is $M=\{0,1\}^{n}$ and the key space is a subset of M with size $(1-\epsilon) 2^{n}$ with a uniform distribution. Suppose the key encryption system is similar to the One Time Pad. Show that the advantage of any attacker can not be more than $\frac{\epsilon}{1-\epsilon}$, and also show for any $j \in\{1,2, . ., n\}$ and $\epsilon=\frac{1}{2 j}$, there exists a key space as explained above and an attacker such that the advantege would be $\frac{\epsilon}{1-\epsilon}$.

Problem 3

Suppose the message space of a symmetric key encryption system is infinite (countable) with a probability distribiution on it such that $\{m \in M: \operatorname{Pr}(m) \neq 0\}$ is infinite. For a real number $\epsilon \in[0,1)$ we say that (Gen, Enc, Dec) is ϵ-secure if and only if for every $m \in M$ with $\operatorname{Pr}(m) \neq 0$ and every $c \in C$ we have $\left|\frac{\operatorname{Pr}(m)-\operatorname{Pr}(m \mid c)}{\operatorname{Pr}(m)}\right| \leq \epsilon$.
Suppose the key space and the cipher text space are countable with a probability distribution on them. For which ϵ 's there exists an ϵ-secure system on M ? (Note that the encryption is not necessarily deterministic.)

Problem 4

a) Suppose $g:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ is a PRG. Show that an attacker with an unlimited computational power can distinguish between the U_{n+1} and $g\left(U_{n}\right)$ with a non-negligible advantage.
b) Suppose that g is a PRG. Examine if the following functions are PRG.
b.1) $g^{\prime}(x)=s \| \bar{s}$
b.2) $g^{\prime}(x)=s \| 0^{|s|}$
b.3) $g^{\prime}(x)=g(s) \| g(g(s))$
b.4) $g^{\prime}(x)=g(0 \| s) \| g(1 \| s)$
c) Suppose that X_{n}, Y_{n}, Z_{n} are three family of probability distributions over $\{0,1\}^{n}$. First define that what does it mean to say that X_{n} and Y_{n} are computationally indistinguishable, then show that if $\left(X_{n}, Y_{n}\right)$ and $\left(Y_{n}, Z_{n}\right)$ are computationally indistingushable then $\left(X_{n}, Z_{n}\right)$ are also computationally indistinguishable.
d) Suppose that g is a PRG. Show that the followings are PRG.
d.1) $g^{\prime}(x)=g(g(s))$
d.2) $g^{\prime}(x y)=g(x) g(y) ; \quad$ with $|x|=|y|$.

