The deadline is today, 18:15.
You are not allowed to collaborate with each other, or use the textbook or lecture notes.
Please submit your solutions as a pdf with "Final__StudentID" as its name.
$30^{1.5(a)}$ Give the formal definition of DDH assumption.
5(b) Explain the ElGamal Cryptosystem.
IO (c) Prove that under the DDH assumption it (ElGamal cryptosystem) is CPA-secure.

10(d) Show that it (ElGamal cryptosystem) is not CCA-secure.
20
2. (a) Describe the Merkle-Damgård construction and show that if the underlying compression function is collision-resistant, so is the Merkle-Damgård construction.
10 (b) Show that $\operatorname{Mac}_{k}(m)=\mathrm{H}(k \| m)$ may not be a secure MAC when H is a Merkle-Damgård-based hash function.
(3 . Let $\mathrm{H}: M \rightarrow\{0,1\}^{128}$ be a collision resistant hash function known to the adversary. Does the function $f(k, m)=\mathrm{H}(m) \oplus k$ give a secure MAC? If so explain why. If not, describe an attack.
4. Let ($E n c_{c B C}, \operatorname{Dec}_{C B C}$) be a randomized CBC-mode encryption scheme built from a block cipher $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{X}$. Let $\mathrm{H}: \mathcal{X} \leq L \rightarrow \mathcal{X}$ be a collision resistant hash function. Define the following candidate authenticated encryption scheme (Enc, Dec):

- Enc $(k, m):$ Output $c \leftarrow \operatorname{Enc}_{\mathrm{CBC}}(k, \mathrm{H}(m) \| m)$.
- $\operatorname{Dec}(k, c)$: Compute $(t, m) \leftarrow \operatorname{Dec}_{\mathrm{CBC}}(k, c)$ and output m if $t=$ $\mathrm{H}(m)$ and \perp otherwise.
(a) Show that (Enc, Dec) does not provide ciphertext integrity.
(1.) (b) Show that (Enc, Dec) is not CCA-secure.
(c) (c) Would the above problems go away if the construction had used randomized counter mode encryption instead of CBC-mode encryption? Give a brief explanation.

5. Show that REMs and PREs are equivalent in the following sense: If there exists an IND-CPA secure PKE scheme, then there exists an IND-CPA secure KEM, and vice versa.
Reminder: A key-encapsulation mechanism (KEM) is a tuple of PPT algorithms (Gen, Encaps, Decaps) such that:

- $(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$
- $(c, k) \leftarrow \operatorname{Encaps}_{p k}\left(1^{n}\right)$
- $k / \perp \leftarrow \operatorname{Decaps}_{s k}(c)$

It is required that $\operatorname{Pr}\left[(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right) ;(c, k) \leftarrow \operatorname{Encaps}_{p k}\left(1^{n}\right)\right.$: $\left.\operatorname{Decaps}_{s k}(c)=k\right] \geq 1-\operatorname{negl}(n)$

Reminder:

Let $\Pi=($ Gen, Encaps, Decaps) be a KEM and \mathcal{A} an arbitrary adversary.
The CPA indistinguishability experiment $\operatorname{KEM}_{\mathcal{A}, \Pi}^{c p a}(n)$:

1. Gen $\left(1^{n}\right)$ is run to obtain keys $(p k, s k)$. Then $\operatorname{Encaps}_{p k}\left(1^{n}\right)$ is run to generate (c, k) with $k \in\{0,1\}^{n}$.
2. A uniform bit $b \in\{0,1\}$ is chosen. If $b=0$ set $\hat{k}:=k$. If $b=1$ then choose a uniform $\hat{k} \in\{0,1\}^{n}$.
3. Give $(p k, c, \hat{k})$ to \mathcal{A}, who outputs a bit b^{\prime}. The output of the experiment is defined to be 1 if $b^{\prime}=b$, and 0 otherwise.

In the experiment, \mathcal{A} is given the ciphertext c and either the actual key k corresponding to c, or an independent, uniform key. The KEM is CPA-secure if no efficient adversary can distinguish between these possibilities.

DEFINITION 11.11 A key-encapsulation mechanism Π is CPA-secure if for all probabilistic polynomial-time adversaries \mathcal{A} there exists a negligible function negl such that

$$
\operatorname{Pr}\left[\operatorname{KEM}_{\mathcal{A}, \Pi}^{\mathrm{cpa}}(n)=1\right] \leq \frac{1}{2}+\operatorname{negl}(n)
$$

The deadline for the next two questions is until tomorrow, Friday 18:15:

1. Say a public-key encryption scheme $\Pi=$ (Gen, Enc, Dec) for n-bit messages is one-way if the probability $\operatorname{Pr}\left[\operatorname{PubK}_{\mathcal{A}, \Pi}^{\circ \mathrm{w}}(n)=1\right]$ is negligible
for any PPT adversary \mathcal{A}. The experiment $\operatorname{PubK}_{\mathcal{A}, \Pi}^{\mathrm{ow}}(n)$ is shown as follows.

- Gen $\left(1^{n}\right)$ is run to obtain $(p k, s k)$.
- A message m is chosen uniformly from $\{0,1\}^{n}$ and a ciphertext $c \leftarrow \operatorname{Enc}_{p k}(m)$ is generated.
- \mathcal{A} is given $(p k, c)$ and outputs m^{\prime}.
- $\operatorname{PubK}_{\mathcal{A}, \Pi}^{\circ \mathrm{w}}(n)=1$ if $m^{\prime}=m$.
a) Show that if a public-key encryption scheme Π for n-bit messages has CPA security, then Π is one-way.
(1.)(b) Show that CPA security is strictly stronger than one-way security. Hint: Give a public-key encryption scheme example which has one-way security but does not have CPA security.
Construct a CPA secure KEM using one-way secure public-key encryption scheme in the random oracle model. Show your construction and proof ideas.

2. Let $N=p q$ be an RSA modulus and take $e \in \mathbb{N}$ to be a prime that is also relatively prime to $\phi(N)$. Let $u \leftarrow \mathbb{Z}_{N}^{*}$, and define the hash function

$$
\mathrm{H}_{N, e, u}: \mathbb{Z}_{N} \times\{0, \ldots, e-1\} \rightarrow \mathbb{Z}_{N} \quad \text { where } \quad \mathrm{H}_{N, e, u}(x, y)=x^{e} u^{y} \in \mathbb{Z}_{N}
$$

We want to show that under RSA assumption, $\mathrm{H}_{N, e, u}$ defined above is collision-resistant. Namely, suppose there is an efficient adversary \mathcal{A} that takes as input (N, e, u) and outputs $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$ such that $\mathrm{H}_{N, e, u}\left(x_{1}, y_{1}\right)=\mathrm{H}_{N, e, u}\left(x_{2}, y_{2}\right)$. We use \mathcal{A} to construct an efficient adversary \mathcal{B} that takes as input (N, e, u) where $u \leftarrow \mathbb{Z}_{N}^{*}$ and outputs x such that $x^{e}=u \in \mathbb{Z}_{N}$.
(a) (15 points) Show that using algorithm \mathcal{A} defined above, algorithm \mathcal{B} can efficiently compute $a \in \mathbb{Z}_{N}$ and $b \in \mathbb{Z}$ such that $a^{e}=u^{b}$ $(\bmod N)$ and $0 \neq|b|<e$. Remember to argue why any inverse you compute will exist (or alternatively, if they do not exist, then \mathcal{B} can directly break RSA).
(b) (5 points) Use the above relation to show how \mathcal{B} can efficiently compute $x \in \mathbb{Z}_{N}$ such that $x^{e}=u$.
Hint: Since $|b|<e$ and e is prime, $\operatorname{gcd}(b, e)=1$. Now, apply Bezout's identity. Note that \mathcal{B} does not know the factorization of N, so it is not able to compute $b^{-1}(\bmod \phi(N))$.
Note: By Bezout's identity, if $\operatorname{gcd}(b, e)=1$, then there exists integers $s, t \in \mathbb{Z}$ such that $b s+e t=1$.
(c) (10 points) Show that if we extend the domain of $\mathbf{H}_{N, e, u}$ to $\mathbb{Z}_{N} \times$ $\{0, \ldots, e\}$, then the function is no longer collision-resistant.

