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Problem 1
For this purpose, we introduce a simple protocol in 3 steps for everyone in the group
to follow.

1. Each party shares his input value among other parties and himself using Benaloh’s
secret sharing scheme.

2. After the last step, each person has received n shares from himself and others in
the group. Each party calculates the sum of his received shares and announces
the result to the group.

3. Each of the parties calculate the sum of the declared values.Sum of the declared
values   is equal to the desired sum. Therefore,

As the sum of the declared values by all parties in step 2 is equal to the desired sum,
each party in step 3 will acheive the sum of the group’s initial values.

Proof) Suppose n people in the group are p1, ..., pn and their inital values are v1, . . . , vn,
respectively. In step 1, each party shares their value among everyone in the group using
Benaloh’s scheme. Let’s suppose that in this step, pi will create shares si,1, . . . , si,n and
gives the share si,j to pj for 1 ≤ j ≤ n. As a result of the secret sharing scheme we
used, we have vi = si,1 + · · · + si,n. In step 2, everyone has received their shares and
announce the sum of their shares, let’s call the declared values x1, . . . xn. Let’s see what
will the parties reach by calculating the sum of these declared values, in step 3.∑

1≤i≤n

xi =
∑

1≤i,j≤n

si,j =
∑

1≤i≤n

vi
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Therefore, at the end of the proposed protocol, each party will have the sum of the
group’s values without gaining any further information about anyone else’s value.

As for the security of the protocol, it is easy to see that any information about anyone’s
value would have to come from the shares the owner of that value had distributed among
the group. We have discussed the security of Benaloh’s secret sharing scheme in the
lecture notes. As a result of Benaloh’s security, our protocol is proved to be secure.

Problem 2
Perfectly hiding)

To show this, we need to prove that given commitment c, every value x is equally likely
to be the value commited in c. We will do so by proving that given x, r and any x′ ∈ Zq,
exists r′ ∈ Zq such that gxhr = gx

′
hr′.

gxhr = gx
′
hr′ → gxgar = gx

′
gar

′ → x+ ar ≡ x′ + ar′ → r′ ≡ (x− x′)a−1 + r (mod q)

Therefore, it was shown that for any x′ ∈ Zq, exists a unique r′ ∈ Zq that would result
in the commitment c (Note that a must be known to compute r′)

Computationally binding)

The discrete logarithm problem is defined as: given a group G, a generator g of the
group and an element h of G, to find the discrete logarithm to the base g of h in the
group G.

We know that for the group G in the problem, solving the discrete logarithm problem
is difficult, meaning no polynomial-time algorithm exists that can solve it.
We will show that if the sender can find different x and x′ that both of which open
commitment c = gxhr, then he can solve the discrete log problem. Suppose the sender
knows x, r, x′, r′ s.t. gxhr = gx

′
hr′, because h = ga, as explained in the previous part,

this means that x + ar ≡ x′ + ar′ (mod q). Therefore, the sender can compute a as
(x′−x)(r−r′)−1. But this means that the sender could compute the discrete logarithm
of h in polynomial time! which contradicts with the fact that the discrete logarithm
problem is difficult for G, as stated above. Therefore, the sender can not find such x′, r′

in polynomial time, and as a result, the commitment is computationally binding.
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Problem 3
Part a)

We have,

B2 = Bx
1 ⇔ (

A2

gb
)rAs

0 = (Ar
1g

s)x ⇔ (gxy+a−b)rgxs = gyrxgsx ⇔ xy+a−b ≡ xy ⇔ a ≡ b (mod p).

Therefore, Alice could calculate Bx
1 and compare it with B2, if they were equal she

would know that they live in the same province, and otherwise, she would know that
they live in different provinces.

We claim that in case they are not in the same province, Alice will not gain any further
information about Bob’s province. We will do so by proving that given r, s, b and
any b′ ∈ {1, . . . , 50} that b′ ̸= a, there exist unique r′, s′ ∈ Zp such that for ⟨B′

1, B
′
2⟩

computed from r′, s′ and b′, the equality ⟨B1, B2⟩ = ⟨B′
1, B

′
2⟩ would hold. This equality

means B2

Bx
1
=

B′
2

(B′
1)

x , which results in g(a−b)r = g(a−b′)r′. Because a ̸= b′, the element a− b′

has a multiplicative inverse element in G.

g(a−b)r = g(a−b′)r′ ⇔ (a− b)r ≡ (a− b′)r′ ⇔ r′ ≡ (a− b′)−1(a− b)r (mod p)

From B1 = B′
1 it can be concluded that

B1 = B′
1 ⇔ gyr+s = gyr

′+s′ ⇔ yr + s ≡ yr′ + s′ ⇔ s′ = yr + s− yr′.

Therefore, unique r′, s′ exist that the equality ⟨B1, B2⟩ = ⟨B′
1, B

′
2⟩ would hold. As a

result, Alice can gain no further information about Bob’s province if a ̸= b.

Part b)

Consider a cyclic group G of order q, and with generator g. The DDH assumption states
that no efficient algorithm can distinguish between the two distributions ⟨ga, gb, gab⟩ and
⟨ga, gb, gc⟩ where a,b,c are chosen at random in Zq.

Lemma1. Suppose X0 and X1 are two distributions that X0 ≃ X1, if M is an efficient
algorithm we have that M(X0) ≃ M(X1).

Lemma2. Suppose X0, X1 and X2 are three distributions that X0 ≃ X1 and X1 ≃ X2.
We have that X0 ≃ X2.

From the DDH assumption we have that ⟨gx, gy, gxy⟩ ≃ ⟨gx, gy, gz⟩ where x, y, z are
chosen at random in Zq. Using lemma1, we can get ⟨gx, gy, gxy+a⟩ ≃ ⟨gx, gy, gz+a⟩ (1).
As a and z are both random from Zq, we have that ⟨gx, gy, gz+a⟩ ≃ ⟨gx, gy, gz⟩ (2).
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Applying Lemma2 on (1) and (2) results in ⟨gx, gy, gxy+a⟩ ≃ ⟨gx, gy, gz⟩. Therefore,
what Bob sees, can not be distinguished from the random distribution of ⟨gx, gy, gz⟩ by
any efficient algorithm. As a result, Bob can gain no information about Alice’s province
in polynomial time.
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