

دانشکدهی علوم ریاضی

مقدمهای بر رمزنگاری پاسخ نامه سری ۷ نگارنده : آرش عاشوری

Problem 1

Scheme 1:

This scheme is secure. Suppose to the contrary that there exists an adversary A which has a non negligible advantage $\mu(n)$ in attacking this scheme. Now consider an adversary B attacking to the original scheme as the following:

It runs another signature scheme C as the original scheme. we name its keys by (sk_1, pk_1) .

Then it chooses a random bit b by probability $\frac{1}{2}$ and sets $(PK_0, PK_1) = (pk_b, pk_{\bar{b}})$, which pk_0 is the challengers public key. Attaker A attacks to a signature scheme 1 with public key (PK_0, PK_1) . Now for every message m which A sends, B sends it to the challenger and gets σ_0 and also it computes $\sigma_1 = S(sk_1, m)$ and sets $\sigma = (\sigma_b, \sigma_{\bar{b}})$ and Then sends σ to A.

Finally when A sends (m, σ_0, σ_1) , B sends (m, σ_b) to the challenger. By symmetry we have:

 $\begin{aligned} \Pr(V(PK_0, m, \sigma_0) &= 1) &= \Pr(V(PK_1, m, \sigma_1) = 1) \\ \mu(n) &= \Pr(V(PK_0, m, \sigma_0) = 1 \lor V(PK_1, m, \sigma_1) = 1) \le 2\Pr(V(pk_0, m, \sigma_b) = 1) \\ \Pr(V(pk_0, m, \sigma_b) = 1) \ge \frac{\mu(n)}{2} \end{aligned}$

Hence B has a non neglible advantage against the original scheme which is a contradiction. Proof is complete.

Scheme 2: This scheme is not secure. Suppose an adversary sends two messages $(0^n || 0^n), (1^n || 1^n)$ to the challenger and receives $c_0 || c_1$ as the signature of the message $(0^n || 0^n)$ and $c_2 || c_3$ as the signature of the message $(1^n || 1^n)$.

Then adversary sends message $(0^n || 1^n)$ and $(c_0 || c_3)$ as its signature. This signature would be verified with pribability 1. Because:

$$c_0 = S(sk_0, 0^n), c_3 = S(sk_1, 1^n)$$

$$\rightarrow V(pk_0, 0^n, c_0) = 1, V(pk_1, 1^n, c_3) = 1 \rightarrow V_2((pk_0, pk_1), (0^n || 1^n), c_0 || c_3) = 1$$

Problem 2

Suppose $f : \{0, 1\}^n \to \{0, 1\}^n$ be a one way function. Let A be the following scheme: **Gen:** A choose 2k values $x_1^0, x_2^0, ..., x_k^0, x_1^1, x_2^1, ..., x_k^1$ each uniformly random chosen from $\{0, 1\}^n$ And computes $y_j^b = f(x_j^b)$ for every $b \in \{0, 1\}$ and $j \in \{1, 2, ..., k\}$.

A chooses $(y_1^0, ..., y_k^0, y_1^1, ..., y_k^1$ as the public key and $(x_1^0, x_2^0, ..., x_k^0, x_1^1, x_2^1, ..., x_k^1)$ as the secret key.

Signature: A gets the message $m = m_1 m_2 \dots m_k \in \{0, 1\}^k$ and computes $Signature(sk, m) = x_1^{m_1} x_2^{m_2} \dots x_k^{m_k}$.

Verify: A gets $(m, \sigma = z_1 z_2 \dots z_k)$ and it outputs 1 if for every $j \in \{1, 2, \dots, k\} : f(z_j) = y_j^{m_j}$ and it outputs 0 otherwise.

Now we prove that this scheme is one time secure. Suppose to the contrary that there exist a attacker B with non neglible advantage $\mu(n)$. Consider the following attacker C to the one way function f. C chooses 2k - 1 values $z_1, ..., z_{2k-1}$ each uniformly random from $\{0,1\}^n$ and computes $f(z_j)$ for every $j \in \{1,2,...,2k-1\}$. Then challenger chooses a random $z \in \{0,1\}^n$ and sends f(z) to C. C sets a public key $y_1^0, ..., y_k^0, y_1^1, ..., y_k^1$ by a random permutation of f(z) and $f(z_j)$ for $j \in \{1,2,...,2k-1\}$ and its correspondence secret key $x_1^0, x_2^0, ..., x_k^0, x_1^1, x_2^1, ..., x_k^1$. C doesn't know one element of this secret key (i.e., z).

C gives the public key to B and it sends at most one message m to the C to be signed. By probability $\frac{1}{2}$, C cant sign the message because the random permutation of public key. In this case C sends 0^n for its guess of z. In other case it signs m and then B send another message m_1 and its guessed signature σ_1 . Because $m \neq m_1$ they are different in at least one bit. Hence by at least probability $\frac{1}{k}$ there are different in the bit which C doesnt know whats the secret key. Hence in this case if the signature σ_1 is right then C has found z. Hence C gets z by probability greater than $\frac{\mu(n)}{2k}$ which is not neglible. But this contadicts to f being a one way function. Proof is complete.

Problem 3

a) Let n(.,.) be a polynomial. A n-hinting PRG scheme consists of two PPT algorithms *Setup*, *Eval* with the following syntax.

Setup (λ, l) : The setup algorithm takes as input the security parameter $\lambda \in \mathbb{N}$, and length parameter $l \in \mathbb{N}$, and outputs public parameters pp and input length $n = n(\lambda, l)$. $Eval(pp, s \in \{0, 1\}^n)$: The evaluation algorithm takes as input the public parameters pp, an n bit string s, and outputs $z_0 z_1 \dots z_n$, which each z_i is l bits.

Now for any PPT adverasry A and $\lambda, l \in N$ consider the following experiment:

- 1) Challenger runs $Setup(\lambda, l)$ and gives pp and n to A.
- 2) Challenger chooses a random bit b.

3) If b = 0, then challenger chooses a matrix $z \ (2 \times n)$ with each index chosen uniformly random from U_l , and a z_0 chosen uniformly random from U_l , otherwise (i.e., b = 1) it chooses a uniformly random string s from U_n and computes $x_0x_1...x_n = Eval(pp, s)$ and also for every $i \in \{1, 2, 3, ..., n\}$ chooses y_i uniformly random from U_l . Then it computes $z_0 = x_0$, and for every $i \in \{1, 2, 3, ..., n\}$, $b \in \{0, 1\}$ if $b = x_{0i}$, $z(i, b) = x_i$ and otherwise $z(i, b) = y_i$

- 4) Challenger sends z and z_0 to A.
- 5) A chooses a bit \overline{b} .

A hinting PRG scheme (*Setup*, *Eval*) is said to be secure if for any PPT adverasry A, polynomial L(.), there exists a negligible function negl() such that for all $\lambda \in \mathbb{N}$, $l = l(\lambda)$, for the above experiment the following hold:

 $|\Pr(b=\bar{b}) - \frac{1}{2}| \le negl(\lambda)$

b) Let $G : \{0,1\}^n \to \{0,1\}^{l(n)}$ be a PRG, then define $\overline{G} : \{0,1\}^{n+1} \to \{0,1\}^{l(n)+1}$ as: $\overline{G}(s_1s_2...s_{n+1}) = G(s_1...s_n)s_{n+1}$

We show that \overline{G} is PRG but not a hinting PRG.

Suppose that \bar{G} is not a PRG. Then there exist an attacker A with non neglible advantage $\mu(n)$. Using A we construct an attacker B to G. Suppose challenger sends $x_1x_2...x_{l(n)}$ to B in the experiment, then B chooses a random bit x and sends $x_1x_2...x_{l(n)}x$ to A. If A chooses \bar{G} , B chooses G and if A chooses $U_{l(n)+1}$, B chooses $U_{l(n)}$. Hence if A chooses right, B chooses right too, and conversely if A choose wrong it chooses wrong too. Hence their advantage is the same, which is a contradiction because G is a PRG. Hence \bar{G} is PRG. Now we show that its not a hinting PRG. Suppose in the experiment of hinting PRG challenger sends z_0 and z_i^b for every $b \in \{0,1\}$ and $i \in \{1, 2, ..., n+1\}$.

If the last bit of z_{n+1}^0 be 0 or the last bit of z_{n+1}^1 be 1, B chooses \overline{G} in the experiment and chooses uniform distribution otherwise.

If challenger sends the data using \overline{G} , then *B* chooses \overline{G} . Because if the last input of *PRG* be s_{n+1} then the last bit of $z_{n+1}^{s_{n+1}}$ would be s_{n+1} .

And if challenger sends the data using uniform distribution, B chooses \overline{G} with probability $\frac{3}{4}$. Hence the advantage of B is $\frac{1}{4}$ which is not neglible. Hence \overline{G} is not hinting PRG.

c) Suppose we have a CPA-secure public key encryption $\Pi(n) = (Gen, Enc, Dec)$, a Hinting PRG $H : \{0,1\}^n \to \{0,1\}^{n(n+1)}$ and a PRG G. And suppose algorithm ENCwith parametr n uses a random $x \in \{0,1\}^n$ for encrypyion and message space is $\{0,1\}^n$. Let $\Pi'(n) = (GEN', ENC', DEC')$ be a public key encryption on the message space $\{0,1\}^n$ as following:

 $GEN'(1^n)$: It runs $GEN(1^n)$, 2n times and obtains $pk = \{pk_{b,i}\}_{b \in \{0,1\}, i \in \{1,2,\dots,n\}}$, $sk = \{sk_{b,i}\}_{b \in \{0,1\}, i \in \{1,2,\dots,n\}}$. And also runs Setup algorithm for hinting PRG for $\lambda = l = n$.

ENC'(pk,m):

It first chooses a uniformly random tag $t = t_1 t_2 ... t_n$ where every t_i is from $\{0, 1\}^{l(n)}$, which l(n) is the length of the ouput of PRG G. Then it chooses a uniformly random seed s form $\{0, 1\}^n$ and computes $H(s) = z_0 z_1 ... z_n$ and then computes the main ciphertext $c = z_0 \oplus m$.

And for every $i \in \{1, 2, ..., n\}$, the signal ciphertexts c_{1i}, c_{2i}, c_{3i} are computed as follows: It chooses x_i, h uniformly random from $\{0, 1\}^n$ and:

If the ith bit s be zero then:

$$c_{0i} = Enc(pk_{0i}, z_i, x_i)$$

$$c_{1i} = Enc(pk_{1i}, h, 0^n)$$

$$c_{2i} = G(x_i)$$

And if the ith bit s be 1 then:

$$c_{0i} = Enc(pk_{0i}, h, 0^n)$$

$$c_{1i} = Enc(pk_{1i}, z_i, x_i)$$

$$c_{2i} = G(x_i) + t_i$$

Then:

$$Enc(pk,m) = \{c, t, \{c_{0i}, c_{1i}, c_{2i}\}_{i \in \{1,2,\dots,n\}}\}$$

DEC'(pk, m): It first uses $\{sk_{0i}\}$ and obtains $y_i = DEC(sk_{i0}, c_{0i})$. It then checks if $G(y_i) = c_2$. If so, it guesses that $s_i = 0$, else it guesses that $s_i = 1$. With this estimate for s, the decryption algorithm can compute $H(s) = z_0 z_1 \dots z_n$ and then compute $c \oplus z_0$ to learn the message m.

Then the decryption algorithm needs to check that the guess for s is indeed correct. If the ith bit of s is guessed to be 0, then the decryption algorithm checks that c_{0i} is a valid ciphertext - it simply checks if $ENC(pk_{0i}, y_i, z_i) = c_{0i}$. If the ith bit of s is guessed to be 1, then the decryption algorithm first recovers the messaage $\bar{y}_i = DEC(sk_{1i}, c_{1i})$. and checks if $c_{1i} = ENC(pk_{1i}, \bar{y}_i, z_i)$. , and also checks that $c_{2i} = G(\bar{y}_i) + t_i$. Finally, if all these checks pass, the decryption algorithm outputs $z_0 \oplus c$.