

دانشكلدی علوم رياضى

Problem 1

Scheme 1:

This scheme is secure. Suppose to the contrary that there exists an adversary A which has a non negligible advantage $\mu(n)$ in attacking this scheme. Now consider an adversary B attacking to the original scheme as the following:
It runs another signature scheme C as the original scheme. we name its keys by $\left(s k_{1}, p k_{1}\right)$.
Then it chooses a random bit b by probability $\frac{1}{2}$ and sets $\left(P K_{0}, P K_{1}\right)=\left(p k_{b}, p k_{\bar{b}}\right)$, which $p k_{0}$ is the challengers public key. Attaker A attacks to a signature scheme 1 with public key $\left(P K_{0}, P K_{1}\right)$. Now for every message m which A sends, B sends it to the challenger and gets σ_{0} and also it computes $\sigma_{1}=S\left(s k_{1}, m\right)$ and sets $\sigma=\left(\sigma_{b}, \sigma_{\bar{b}}\right)$ and Then sends σ to A.
Finally when A sends $\left(m, \sigma_{0}, \sigma_{1}\right), B$ sends $\left(m, \sigma_{b}\right)$ to the challenger.
By symmetry we have:
$\operatorname{Pr}\left(V\left(P K_{0}, m, \sigma_{0}\right)=1\right)=\operatorname{Pr}\left(V\left(P K_{1}, m, \sigma_{1}\right)=1\right)$
$\mu(n)=\operatorname{Pr}\left(V\left(P K_{0}, m, \sigma_{0}\right)=1 \vee V\left(P K_{1}, m, \sigma_{1}\right)=1\right) \leq 2 \operatorname{Pr}\left(V\left(p k_{0}, m, \sigma_{b}\right)=1\right)$
$\operatorname{Pr}\left(V\left(p k_{0}, m, \sigma_{b}\right)=1\right) \geq \frac{\mu(n)}{2}$
Hence B has a non neglible advantage against the original scheme which is a contradiction. Proof is complete.

Scheme 2: This scheme is not secure. Suppose an adversary sends two messages $\left(0^{n} \| 0^{n}\right),\left(1^{n} \| 1^{n}\right)$ to the challenger and recieves $c_{0} \| c_{1}$ as the signature of the message $\left(0^{n} \| 0^{n}\right)$ and $c_{2} \| c_{3}$ as the signature of the message $\left(1^{n} \| 1^{n}\right)$.
Then adversary sends message $\left(0^{n} \| 1^{n}\right)$ and $\left(c_{0} \| c_{3}\right)$ as its signature. This signature would be verified with pribability 1. Because:
$c_{0}=S\left(s k_{0}, 0^{n}\right), c_{3}=S\left(s k_{1}, 1^{n}\right)$
$\rightarrow V\left(p k_{0}, 0^{n}, c_{0}\right)=1, V\left(p k_{1}, 1^{n}, c_{3}\right)=1 \rightarrow V_{2}\left(\left(p k_{0}, p k_{1}\right),\left(0^{n} \| 1^{n}\right), c_{0} \| c_{3}\right)=1$

Problem 2

Suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a one way function. Let A be the following scheme:
Gen: A choose $2 k$ values $x_{1}^{0}, x_{2}^{0}, \ldots, x_{k}^{0}, x_{1}^{1}, x_{2}^{1}, \ldots, x_{k}^{1}$ each uniformly random chosen from $\{0,1\}^{n}$ And computes $y_{j}^{b}=f\left(x_{j}^{b}\right)$ for every $b \in\{0,1\}$ and $j \in\{1,2, \ldots, k\}$.
A chooses $\left(y_{1}^{0}, \ldots, y_{k}^{0}, y_{1}^{1}, \ldots, y_{k}^{1}\right.$ as the public key and $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{k}^{0}, x_{1}^{1}, x_{2}^{1}, \ldots, x_{k}^{1}\right)$ as the secret key.
Signature: A gets the message $m=m_{1} m_{2} \ldots m_{k} \in\{0,1\}^{k}$ and computes $\operatorname{Signature}(s k, m)=x_{1}^{m_{1}} x_{2}^{m_{2}} \ldots x_{k}^{m_{k}}$.
Verify: A gets $\left(m, \sigma=z_{1} z_{2} \ldots z_{k}\right)$ and it outputs 1 if for every $j \in\{1,2, \ldots, k\}: f\left(z_{j}\right)=$ $y_{j}^{m_{j}}$ and it outputs 0 otherwise.

Now we prove that this scheme is one time secure. Suppose to the contrary that there exist a attacker B with non neglible advantage $\mu(n)$. Consider the following attacker C to the one way function f. C chooses $2 k-1$ values $z_{1}, \ldots z_{2 k-1}$ each uniformly random from $\{0,1\}^{n}$ and computes $f\left(z_{j}\right)$ for every $j \in\{1,2, \ldots, 2 k-1\}$. Then challenger chooses a random $z \in\{0,1\}^{n}$ and sends $f(z)$ to $C . C$ sets a public key $y_{1}^{0}, \ldots, y_{k}^{0}, y_{1}^{1}, \ldots, y_{k}^{1}$ by a random permutation of $f(z)$ and $f\left(z_{j}\right)$ for $j \in\{1,2, \ldots, 2 k-1\}$ and its correspondence secret key $x_{1}^{0}, x_{2}^{0}, \ldots, x_{k}^{0}, x_{1}^{1}, x_{2}^{1}, \ldots, x_{k}^{1}$. C doesnt know one element of this secret key (i.e., z).
C gives the public key to B and it sends at most one message m to the C to be signed. By probability $\frac{1}{2}, C$ cant sign the message because the random permutation of public key. In this case C sends 0^{n} for its guess of z. In other case it signs m and then B send another message m_{1} and its guessed signature σ_{1}. Because $m \neq m_{1}$ they are different in at least one bit. Hence by at least probability $\frac{1}{k}$ there are different in the bit which C doesnt know whats the secret key. Hence in this case if the signature σ_{1} is right then C has found z. Hence C gets z by probability greater than $\frac{\mu(n)}{2 k}$ which is not neglible. But this contadicts to f being a one way function. Proof is complete.

Problem 3

a) Let $n(.,$.$) be a polynomial. A n-hinting PRG scheme consists of two PPT algorithms$ Setup, Eval with the following syntax.
$\operatorname{Setup}(\lambda, l)$: The setup algorithm takes as input the security parameter $\lambda \in \mathbb{N}$, and length parameter $l \in \mathbb{N}$, and outputs public parameters $p p$ and input length $n=n(\lambda, l)$. $\operatorname{Eval}\left(p p, s \in\{0,1\}^{n}\right)$: The evaluation algorithm takes as input the public parameters $p p$, an n bit string s, and outputs $z_{0} z_{1} \ldots z_{n}$, which each z_{i} is l bits.

Now for any PPT adverasry A and $\lambda, l \in N$ consider the folowing experiment:

1) Challenger runs $\operatorname{Setup}(\lambda, l)$ and gives $p p$ and n to A.
2) Challenger chooses a random bit b.
3) If $b=0$, then challenger chooses a matrix $z(2 \times n)$ with each index chosen uniformly random from U_{l}, and a z_{0} chosen uniformly random from U_{l}, otherwise (i.e., $b=1$) it chooses a uniformly random string s from U_{n} and computes $x_{0} x_{1} \ldots x_{n}=\operatorname{Eval}(p p, s)$ and also for every $i \in\{1,2,3, \ldots, n\}$ chooses y_{i} uniformly random from U_{l}. Then it computes $z_{0}=x_{0}$, and for every $i \in\{1,2,3, \ldots, n\}, b \in\{0,1\}$ if $b=x_{0 i}, z(i, b)=x_{i}$ and otherwise $z(i, b)=y_{i}$
4) Challenger sends z and z_{0} to A.
5) A chooses a bit \bar{b}.

A hinting PRG scheme (Setup, Eval) is said to be secure if for any PPT adverasry A, polynomial $L($.$) , there exists a negligible function negl() such that for all \lambda \in \mathbb{N}, l=l(\lambda)$, for the above experiment the following hold:
$\left|\operatorname{Pr}(b=\bar{b})-\frac{1}{2}\right| \leq \operatorname{negl}(\lambda)$
b) Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{l(n)}$ be a PRG, then define $\bar{G}:\{0,1\}^{n+1} \rightarrow\{0,1\}^{l(n)+1}$ as: $\bar{G}\left(s_{1} s_{2} \ldots s_{n+1}\right)=G\left(s_{1} \ldots s_{n}\right) s_{n+1}$
We show that \bar{G} is PRG but not a hinting PRG.
Suppose that \bar{G} is not a PRG. Then there exist an attacker A with non neglible advantage $\mu(n)$. Using A we construct an attacker B to G. Suppose challenger sends $x_{1} x_{2} \ldots x_{l(n)}$ to B in the experiment, then B chooses a random bit x and sends $x_{1} x_{2} \ldots x_{l(n)} x$ to A. If A chooses \bar{G}, B chooses G and if A chooses $U_{l(n)+1}, B$ chooses $U_{l(n)}$. Hence if A chooses right, B chooses right too, and conversely if A choose wrong it chooses wrong too. Hence their advantage is the same, which is a contradiction because G is a PRG. Hence \bar{G} is PRG. Now we show that its not a hinting PRG. Suppose in the experiment of hinting PRG challenger sends z_{0} and z_{i}^{b} for every $b \in\{0,1\}$ and $i \in\{1,2, \ldots, n+1\}$.

If the last bit of z_{n+1}^{0} be 0 or the last bit of z_{n+1}^{1} be $1, B$ chooses \bar{G} in the experiment and chooses uniform distribution otherwise.

If challenger sends the data using \bar{G}, then B chooses \bar{G}. Because if the last input of $P R G$ be s_{n+1} then the last bit of $z_{n+1}^{s_{n+1}}$ would be s_{n+1}.
And if challenger sends the data using unifoem distribution, B chooses \bar{G} with probability $\frac{3}{4}$. Hence the advantage of B is $\frac{1}{4}$ which is not neglible. Hence \bar{G} is not hinting PRG.
c) Suppose we have a CPA-secure public key encryption $\Pi(n)=(G e n, E n c, D e c)$, a Hinting PRG $H:\{0,1\}^{n} \rightarrow\{0,1\}^{n(n+1)}$ and a PRG G. And suppose algorithm ENC with parametr n uses a random $x \in\{0,1\}^{n}$ for encrypyion and message space is $\{0,1\}^{n}$. Let $\Pi^{\prime}(n)=\left(G E N^{\prime}, E N C^{\prime}, D E C^{\prime}\right)$ be a public key encryption on the message space $\{0,1\}^{n}$ as following:
$G E N^{\prime}\left(1^{n}\right)$: It runs $G E N\left(1^{n}\right), 2 n$ times and obtains $p k=\left\{p k_{b, i}\right\}_{b \in\{0,1\}, i \in\{1,2, \ldots, n\}}$, $s k=\left\{s k_{b, i}\right\}_{b \in\{0,1\}, i \in\{1,2, \ldots, n\}}$.
And also runs Setup algorithm for hinting PRG for $\lambda=l=n$.
$E N C^{\prime}(p k, m)$:
It first chooses a uniformly random tag $t=t_{1} t_{2} \ldots t_{n}$ where every t_{i} is from $\{0,1\}^{l(n)}$, which $l(n)$ is the length of the ouput of PRG G. Then it chooses a uniformly random seed s form $\{0,1\}^{n}$ and computes $H(s)=z_{0} z_{1} \ldots z_{n}$ and then computes the main ciphertext $c=z_{0} \oplus m$.
And for every $i \in\{1,2, \ldots, n\}$, the signal ciphertexts $c_{1 i}, c_{2 i}, c_{3 i}$ are computed as follows: It chooses x_{i}, h uniformly random from $\{0,1\}^{n}$ and:
If the ith bit s be zero then:

$$
\begin{gathered}
c_{0 i}=\operatorname{Enc}\left(p k_{0 i}, z_{i}, x_{i}\right) \\
c_{1 i}=\operatorname{Enc}\left(p k_{1 i}, h, 0^{n}\right) \\
c_{2 i}=G\left(x_{i}\right)
\end{gathered}
$$

And if the ith bit s be 1 then:

$$
\begin{gathered}
c_{0 i}=\operatorname{Enc}\left(p k_{0 i}, h, 0^{n}\right) \\
c_{1 i}=\operatorname{Enc}\left(p k_{1 i}, z_{i}, x_{i}\right) \\
c_{2 i}=G\left(x_{i}\right)+t_{i}
\end{gathered}
$$

Then:

$$
\operatorname{Enc}(p k, m)=\left\{c, t,\left\{c_{0 i}, c_{1 i}, c_{2 i}\right\}_{i \in\{1,2, \ldots, n\}}\right\}
$$

$D E C^{\prime}(p k, m)$: It first uses $\left\{s k_{0 i}\right\}$ and obtains $y_{i}=\operatorname{DEC}\left(s k_{i 0}, c_{0 i}\right)$. It then checks if $G\left(y_{i}\right)=c_{2}$. If so, it guesses that $s_{i}=0$, else it guesses that $s_{i}=1$. With this estimate for s, the decryption algorithm can compute $H(s)=z_{0} z_{1} \ldots z_{n}$ and then compute $c \oplus z_{0}$ to learn the message m.
Then the decryption algorithm needs to check that the guess for s is indeed correct. If the ith bit of s is guessed to be 0 , then the decryption algorithm checks that $c_{0 i}$ is a valid ciphertext - it simply checks if $\operatorname{ENC}\left(p k_{0 i}, y_{i}, z_{i}\right)=c_{0 i}$. If the ith bit of s is guessed to be 1 , then the decryption algorithm first recovers the messaage $\overline{y_{i}}=\operatorname{DEC}\left(s k_{1 i}, c_{1 i}\right)$. and checks if $c_{1 i}=\operatorname{ENC}\left(p k_{1 i}, \bar{y}_{i}, z_{i}\right)$., and also checks that $c_{2 i}=G\left(\bar{y}_{i}\right)+t_{i}$. Finally, if all these checks pass, the decryption algorithm outputs $z_{0} \oplus c$.

