

مدرّس: دكتر شهرام خزائي

مقدمهای بر رمزنگاری پاسخنامه تمرین شماره ۶

دانشکدهی علوم ریاضی

- This problem sets include 75 points.
- For any question contact Sara Sarfaraz via sarassm600gmail.com.

Problem 1

(10 points) Consider the following key-exchange protocol:

(a) Alice chooses a random key k and a random string r both of length n, and sends $s = k \oplus r$ to Bob.

(b) Bob chooses a random string t of length n and sends $u = s \oplus t$ to Alice.

(c) Alice computes $w = u \oplus r$ and sends w to Bob.

(d) Alice outputs k and Bob computes $w \oplus t$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete break).

Solution The statement below proves that Alice and Bob output the same key k: $w \oplus t = u \oplus r \oplus t = s \oplus t \oplus r \oplus t = s \oplus r = k \oplus r \oplus r = k$

Consider the key-exchange experiment:

1. Two parties holding 1^n execute protocol. This results in a transcript *trans* containing all the messages sent by the parties, and a key k output by each of the parties.

2. A uniform bit $b \in \{0,1\}$ is chosen. If b = 0 set $\hat{k} := k$, and if b = 1 then choose uniform $\hat{k} \in \{0,1\}^n$. \mathcal{A} is given *trans* and \hat{k} , and outputs a bit b'. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. (In case $KE_{\mathcal{A},\Pi}^{eav}(n) = 1$, we say that \mathcal{A} succeeds.) The key exchange protocol Π is called secure if for every PPT adversary \mathcal{A} there exists a negligible function negl such that

 $\Pr[b' = b] \le \frac{1}{2} + \operatorname{\mathsf{negl}}(n).$ We want to prove that the above protocol is not secure. $s \oplus u \oplus w = (k \oplus r) \oplus (k \oplus r \oplus t) \oplus (k \oplus r \oplus t \oplus r) = k$ Consider the adversary \mathcal{A} that works as follows: \mathcal{A} computes $k' = s \oplus u \oplus w$. Then outputs $b_1 = 0$ if $k_1 = k'$, and $b_1 = 1$ otherwise. \mathcal{A} wins the game if b = 0 and when b = 1 the uniformly random key k_1 equals the real key k with probability $\frac{1}{2^n}$. Since $\Pr[k_1 = k | b = 1] = \frac{1}{2^n}$ we compute:

$$\Pr[b_1 = b] = 1 - \Pr[k_1 = k | b = 1]. \Pr(b = 1) = 1 - \frac{1}{2^{n+1}} \ge \mathsf{negl}(n) + 0.5$$

Problem 2

(20 Points) Prove that hardness of the CDH problem relative to \mathcal{G} implies hardness of the discrete-logarithm problem relative to \mathcal{G} , and that hardness of the DDH problem relative to \mathcal{G} implies hardness of the CDH problem relative to \mathcal{G} .

Solution Let $(G, q, q) \leftarrow G(1^n)$, where G is a cyclic group of order q with bit-size ||q|| = O(n) and g a generator of G. To prove that hardness of the CDH implies hardness of the discrete-logarithm problem, we show that any algorithm that solves the discrete-logarithm can be used to solve CDH. Let \mathcal{A} be an arbitrary PPT algorithm for the discrete-logarithm problem with respect to \mathcal{G} , i.e., on input (G, q, q, q^x) it outputs $x' \in \mathbb{Z}_q$ and wins the game if x' = x. We construct an algorithm \mathcal{A}' for CDH as follows: Given a CDH instance (G, q, g, g^x, g^y) , \mathcal{A}' queries \mathcal{A} on (G, q, g, g^x) and receives $x' \in \mathbb{Z}_q$. Then \mathcal{A}' computes $(g^y)^x$. Clearly, \mathcal{A}' succeeds if and only if \mathcal{A} succeeds: $(g^y)^{x'} = DH_g(g^x, g^y) \iff x' = x$. Hardness of CDH relative to \mathcal{G} now implies that the success probability of every PPT algorithm – in particular that of \mathcal{A}' – is bounded by some negligible function $\operatorname{negl}(n)$. Thus, we get $\Pr[DLog_{\mathcal{A},\mathcal{G}}(n) = 1] =$ $\Pr[\mathcal{A}'(G,q,g,g^x,g^y) = g^{xy}] \leq \operatorname{negl}(n)$. To prove that CDH is harder than the DDH problem, let \mathcal{A} be an arbitrary PPT algorithm for CDH with respect to \mathcal{G} , i.e., on input (G, q, g, g^x, g^y) it outputs $h \in G$ and wins the game if $h = DH_q(g^x, g^y) = g^{xy}$. We construct an algorithm \mathcal{A}' for DDH as follows: Given access to \mathcal{A} and a DDH instance (G, q, g, g^x, g^y, h') , where either $h' = g^{xy}$ or $h' = g^z$ for a $z \in \mathbb{Z}_q$ chosen uniformly at random, the algorithm \mathcal{A}' queries \mathcal{A} on (G, q, g, g^x, g^y) and receives h. \mathcal{A}' outputs 1 if h' = h and 0 else. Thus,

$$\Pr[\mathcal{A}'(G, q, g, g^x, g^y, g^{xy}) = 1] = \Pr[\mathcal{A}(G, q, g, g^x, g^y) = g^{xy}]$$

On the other hand,

 $\Pr[\mathcal{A}'(G, q, g, g^x, g^y, g^z) = 1] = \frac{1}{q}.$ Assuming that DDH is hard with respect to \mathcal{G} , we get $|\Pr[\mathcal{A}'(G, q, g, g^x, g^y, g^z) = 1] - \Pr[\mathcal{A}'(G, q, g, g^x, g^y, g^{xy})]$

 $|\Pr[\mathcal{A}'(G,q,g,g^x,g^y,g^z)=1] - \Pr[\mathcal{A}'(G,q,g,g^x,g^y,g^{xy})=1]| \le \mathsf{negl}(n). \text{ This implies}$ $\Pr[\mathcal{A}(G,q,g,g^x,g^y)=g^{xy}] \le \mathsf{negl}(n) + \frac{1}{q},$

which is negligible since ||q|| = n. This proves hardness of CDH.

Problem 3

(25 points) Consider the following variant of El Gamal encryption. Let p = 2q + 1, let G be the group of squares modulo $p(\text{so } G \text{ is a subgroup of } \mathbb{Z}_p^* \text{ of order } q)$, and let g be a generator of G. The private key is (G, q, g, x) and the public key is (G, q, g, h), where $h = g^x$ and $x \in \mathbb{Z}_q$ is chosen uniformly. To encrypt a message $m \in \mathbb{Z}_q$, choose a uniform $r \in \mathbb{Z}_q$, compute $c_1 = g^r \mod p$ and $c_2 = h^r + m \mod p$, and let the ciphertext be (c_1, c_2) . Is this scheme CPA-secure? Prove your answer.

Solution This scheme is not secure. Consider an adversary \mathcal{A} who chooses two random plaintexts $m_0, m_1 \in \mathbb{Z}_q$ and receives cipher text (c_1, c_2) from the challenger which is the ciphertext corresponding to m_b for $b \in \{0, 1\}$. We know that c_2 is not necessarily in G as it equals to $h^y + m \mod p$ and addition is not the action of G but

 $c_2 - m_b \mod p = h^y$, hence we must have $(c_2 - m_b \mod p) \in G$.

We know that G includes half of the elements of \mathbb{Z}_p^* , so because m_{1-b} is random we have:

$$\Pr[(c_2 - m_{1-b} \mod p) \in G] = \frac{1}{2}$$

so the algorithm \mathcal{A} does the following:

1. it first checks if $(c_2 - m_1 \mod p) \in G$ and $(c_2 - m_0 \mod p) \in G$. 2. if both of them are True, then \mathcal{A} outputs a random bit. Otherwise, if $(c_2 - m_0 \mod p) \in G$ it will output 0 and if $(c_2 - m_1 \mod p) \in G$ it will output 1. The probability of \mathcal{A} winning is :

$$\mathsf{Adv}(\mathcal{A}) \ge \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 1 = \frac{3}{4}$$

So the advantage of \mathcal{A} is non-negligible and the scheme is not secure.

Problem 4

(20 points) Consider the following public-key encryption scheme. The public key is (G, q, g, h) and the private key is x, generated exactly as in the El Gamal encryption scheme. In order to encrypt a bit b, the sender does the following:

- If b = 0 then choose a uniform $y \in \mathbb{Z}_q$ and compute $c_1 = g^y$ and $c_2 = h^y$. The ciphertext is (c_1, c_2) .
- If b = 1 then choose independent uniform $y, z \in \mathbb{Z}_q$, compute $c_1 = g^y$ and $c_2 = g^z$, and set the ciphertext equal to (c_1, c_2) .

(a) Show that with high probability we can decrypt the ciphertext efficiently given knowledge of x. Specifically, show how to decrypt a bit that is encrypted correctly.(b) Prove that this encryption scheme is CPA-secure if the decision Diffie-Hellman

problem is hard relative to G.

Solution A ciphertext (c_1, c_2) can be decrypted as follows: Compute c_1^x . If $c_2 = c_1^x$, then output 0, otherwise output 1. Decryption succeeds with all but negligible probability since for all x, r it holds $\Pr[g^z = h^y] = \Pr[z = xy] = \frac{1}{q}$.

We can find the probability of decrypting the ciphertext correctly:

$$\Pr[Dec(c_1, c_2) = 0 | b = 0)] = \Pr[c_1^x = c_2 | b = 0] = 1$$

$$\Pr[Dec(c_1, c_2) = 1 | b = 1] = \Pr[c_1^x \neq c_2 | b = 1]$$
$$= 1 - \Pr[c_1^x = c_2 | b = 1] = 1 - \Pr[g^{xy} = g^z] = 1 - \frac{1}{q}$$
$$(\frac{1}{q} \le negl(n))$$

We now prove CPA-security of the above scheme Π under the DDH assumption. Let \mathcal{A} be an adversary against the CPA-security of the scheme. We construct an adversary A' for DDH which uses \mathcal{A} as a black-box. First, \mathcal{A}' receives a DDH instance $(G, q, g, g^x, g^{x'}, h)$ where either $h = g^{xx'}$ (if b = 0) or $h = g^z$ for $z \leftarrow Z_q$ uniformly random (if b = 1). \mathcal{A}' sends the public key $pk := (G, q, g, g^x)$ to \mathcal{A} . W.l.o.g., we assume that \mathcal{A} outputs the two messages $m_0 = 0$ and $m_1 = 1$ (note, the message space is $\{0,1\}$). Then \mathcal{A}' sends the challenge ciphertext $c^* := (g^{x'}, h)$ to \mathcal{A} . If b = 0, then c^* looks like a proper encryption of m_0 , if b = 1, then c^* is an encryption of m_1 . Thus, upon receiving \mathcal{A} 's guess b', \mathcal{A}' outputs b'. Assuming DDH is hard relative to \mathcal{G} , we get

$$\begin{aligned} \mathsf{negl}(n) &\geq |\Pr[\mathcal{A}'(G, q, g, g^x, g^{x'}, g^{xx'}) = 1] - \Pr[\mathcal{A}'(G, q, g, g^x, g^{x'}, g^z) = 1]| \\ &= |1 - \Pr[\mathcal{A}'(G, q, g, g^x, g^{x'}, g^{xx'}) = 0] - \Pr[\mathcal{A}'(G, q, g, g^x, g^{x'}, g^z) = 1]| = \\ |1 - \Pr[PubK^{cpa}_{A,\Pi}(n) = 1|b = 0] - \Pr[PubK^{cpa}_{A,\Pi}(n) = 1|b = 1]| = |1 - 2\Pr[PubK^{cpa}_{A,\Pi}(n) = 1]| \end{aligned}$$

for a negligible function negl. This implies CPA-security of the scheme II:

$$\Pr[PubK_{A,\Pi}^{cpa}(n) = 1] \le \frac{1}{2} + \mathsf{negl}(n)$$