
مقدمهاى بر رمزنگارى

مدرّس: دكتر شهرام خزائى

- This problem sets include 75 points.
- For any question contact Sara Sarfaraz via sarassm60@gmail.com.

Problem 1

(10 points) Consider the following key-exchange protocol:
(a) Alice chooses a random key k and a random string r both of length n, and sends $s=k \oplus r$ to Bob.
(b) Bob chooses a random string t of length n and sends $u=s \oplus t$ to Alice.
(c) Alice computes $w=u \oplus r$ and sends w to Bob.
(d) Alice outputs k and Bob computes $w \oplus t$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete break).

Solution The statement below proves that Alice and Bob output the same key k : $w \oplus t=u \oplus r \oplus t=s \oplus t \oplus r \oplus t=s \oplus r=k \oplus r \oplus r=k$
Consider the key-exchange experiment:

1. Two parties holding 1^{n} execute protocol. This results in a transcript trans containing all the messages sent by the parties, and a key k output by each of the parties.
2. A uniform bit $b \in\{0,1\}$ is chosen. If $b=0$ set $k:=k$, and if $b=1$ then choose uniform $\hat{k} \in\{0,1\}^{n}$. \mathcal{A} is given trans and \hat{k}, and outputs a bit b^{\prime}. The output of the experiment is defined to be 1 if $b^{\prime}=b$, and 0 otherwise. (In case $K E_{\mathcal{A}, \Pi}^{e a v}(n)=1$, we say that \mathcal{A} succeeds.) The key exchange protocol Π is called secure if for every PPT adversary \mathcal{A} there exists a negligible function negl such that $\left.\operatorname{Pr}\left[b^{\prime}=b\right] \leq \frac{1}{2}+\operatorname{neg} \right\rvert\,(n)$. We want to prove that the above protocol is not secure. $s \oplus u \oplus w=(k \oplus r) \oplus(k \oplus r \oplus t) \oplus(k \oplus r \oplus t \oplus r)=k$

Consider the adversary \mathcal{A} that works as follows: \mathcal{A} computes $k^{\prime}=s \oplus u \oplus w$. Then outputs $b_{1}=0$ if $k_{1}=k^{\prime}$, and $b_{1}=1$ otherwise. \mathcal{A} wins the game if $b=0$ and when $b=1$ the uniformly random key k_{1} equals the real key k with probability $\frac{1}{2^{n}}$. Since $\operatorname{Pr}\left[k_{1}=k \mid b=1\right]=\frac{1}{2^{n}}$ we compute:

$$
\operatorname{Pr}\left[b_{1}=b\right]=1-\operatorname{Pr}\left[k_{1}=k \mid b=1\right] \cdot \operatorname{Pr}(b=1)=1-\frac{1}{2^{n+1}} \geq \operatorname{neg}(n)+0.5
$$

Problem 2

(20 Points) Prove that hardness of the CDH problem relative to \mathcal{G} implies hardness of the discrete-logarithm problem relative to \mathcal{G}, and that hardness of the DDH problem relative to \mathcal{G} implies hardness of the CDH problem relative to \mathcal{G}.

Solution Let $(G, q, g) \leftarrow G\left(1^{n}\right)$, where G is a cyclic group of order q with bit-size $\|q\|=O(n)$ and g a generator of G. To prove that hardness of the CDH implies hardness of the discrete-logarithm problem, we show that any algorithm that solves the discrete-logarithm can be used to solve CDH . Let \mathcal{A} be an arbitrary PPT algorithm for the discrete-logarithm problem with respect to \mathcal{G}, i.e., on input $\left(G, q, g, g^{x}\right)$ it outputs $x^{\prime} \in \mathbb{Z}_{q}$ and wins the game if $x^{\prime}=x$. We construct an algorithm \mathcal{A}^{\prime} for CDH as follows: Given a CDH instance $\left(G, q, g, g^{x}, g^{y}\right), \mathcal{A}^{\prime}$ queries \mathcal{A} on $\left(G, q, g, g^{x}\right)$ and receives $x^{\prime} \in \mathbb{Z}_{q}$. Then \mathcal{A}^{\prime} computes $\left(g^{y}\right)^{x}$. Clearly, \mathcal{A}^{\prime} succeeds if and only if \mathcal{A} succeeds: $\left(g^{y}\right)^{x^{\prime}}=D H_{g}\left(g^{x}, g^{y}\right) \Longleftrightarrow x^{\prime}=x$. Hardness of CDH relative to \mathcal{G} now implies that the success probability of every PPT algorithm - in particular that of $\mathcal{A}^{\prime}-$ is bounded by some negligible function negl (n). Thus, we get $\operatorname{Pr}\left[D \log _{\mathcal{A}, \mathcal{G}}(n)=1\right]=$ $\operatorname{Pr}\left[\mathcal{A}^{\prime}\left(G, q, g, g^{x}, g^{y}\right)=g^{x y}\right] \leq \operatorname{negl}(n)$. To prove that CDH is harder than the DDH problem, let \mathcal{A} be an arbitrary PPT algorithm for CDH with respect to \mathcal{G}, i.e., on input $\left(G, q, g, g^{x}, g^{y}\right)$ it outputs $h \in G$ and wins the game if $h=D H_{g}\left(g^{x}, g^{y}\right)=g^{x y}$. We construct an algorithm \mathcal{A}^{\prime} for DDH as follows: Given access to \mathcal{A} and a DDH instance $\left(G, q, g, g^{x}, g^{y}, h^{\prime}\right)$, where either $h^{\prime}=g^{x y}$ or $h^{\prime}=g^{z}$ for a $z \in \mathbb{Z}_{q}$ chosen uniformly at random, the algorithm \mathcal{A}^{\prime} queries \mathcal{A} on $\left(G, q, g, g^{x}, g^{y}\right)$ and receives h. \mathcal{A}^{\prime} outputs 1 if $h^{\prime}=h$ and 0 else. Thus,

$$
\operatorname{Pr}\left[\mathcal{A}^{\prime}\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right]=\operatorname{Pr}\left[\mathcal{A}\left(G, q, g, g^{x}, g^{y}\right)=g^{x y}\right]
$$

On the other hand,
$\operatorname{Pr}\left[\mathcal{A}^{\prime}\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=1\right]=\frac{1}{q}$.
Assuming that DDH is hard with respect to \mathcal{G}, we get
$\left|\operatorname{Pr}\left[\mathcal{A}^{\prime}\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{\prime}\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right]\right| \leq \operatorname{neg}(n)$. This implies $\operatorname{Pr}\left[\mathcal{A}\left(G, q, g, g^{x}, g^{y}\right)=g^{x y}\right] \leq \operatorname{negl}(n)+\frac{1}{q}$,
which is negligible since $\|q\|=n$. This proves hardness of CDH.

Problem 3

(25 points) Consider the following variant of El Gamal encryption. Let $p=2 q+1$, let G be the group of squares modulo p (so G is a subgroup of \mathbb{Z}_{p}^{*} of order q), and let g be a generator of G. The private key is (G, q, g, x) and the public key is (G, q, g, h), where $h=g^{x}$ and $x \in \mathbb{Z}_{q}$ is chosen uniformly. To encrypt a message $m \in \mathbb{Z}_{q}$, choose a uniform $r \in \mathbb{Z}_{q}$, compute $c_{1}=g^{r} \bmod \mathrm{p}$ and $c_{2}=h^{r}+m \bmod p$, and let the ciphertext be (c_{1}, c_{2}). Is this scheme CPA-secure? Prove your answer.

Solution This scheme is not secure. Consider an adversary \mathcal{A} who chooses two random plaintexts $m_{0}, m_{1} \in \mathbb{Z}_{q}$ and receives cipher text $\left(c_{1}, c_{2}\right)$ from the challenger which is the ciphertext corresponding to m_{b} for $b \in\{0,1\}$. We know that c_{2} is not necessarily in G as it equals to $h^{y}+m \bmod p$ and addition is not the action of G but $c_{2}-m_{b} \bmod p=h^{y}$, hence we must have $\left(c_{2}-m_{b} \bmod p\right) \in G$.
We know that G includes half of the elements of \mathbb{Z}_{p}^{*}, so because m_{1-b} is random we have:

$$
\operatorname{Pr}\left[\left(c_{2}-m_{1-b} \bmod p\right) \in G\right]=\frac{1}{2}
$$

so the algorithm \mathcal{A} does the following:

1. it first checks if $\left(c_{2}-m_{1} \bmod p\right) \in G$ and $\left(c_{2}-m_{0} \bmod p\right) \in G$. 2. if both of them are True, then \mathcal{A} outputs a random bit. Otherwise, if $\left(c_{2}-m_{0} \bmod p\right) \in G$ it will output 0 and if $\left(c_{2}-m_{1} \bmod p\right) \in G$ it will output 1 . The probability of \mathcal{A} winning is :

$$
\operatorname{Adv}(\mathcal{A}) \geq \frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot 1=\frac{3}{4}
$$

So the advantage of \mathcal{A} is non-negligible and the scheme is not secure.

Problem 4

(20 points) Consider the following public-key encryption scheme. The public key is (G, q, g, h) and the private key is x, generated exactly as in the El Gamal encryption scheme. In order to encrypt a bit b, the sender does the following:

- If $b=0$ then choose a uniform $y \in \mathbb{Z}_{q}$ and compute $c_{1}=g^{y}$ and $c_{2}=h^{y}$. The ciphertext is $\left(c_{1}, c_{2}\right)$.
- If $b=1$ then choose independent uniform $y, z \in \mathbb{Z}_{q}$, compute $c_{1}=g^{y}$ and $c_{2}=g^{z}$, and set the ciphertext equal to $\left(c_{1}, c_{2}\right)$.
(a) Show that with high probability we can decrypt the ciphertext efficiently given knowledge of x. Specifically, show how to decrypt a bit that is encrypted correctly.
(b) Prove that this encryption scheme is CPA-secure if the decision Diffie-Hellman
r_q
problem is hard relative to G.
Solution A ciphertext $\left(c_{1}, c_{2}\right)$ can be decrypted as follows: Compute c_{1}^{x}. If $c_{2}=c_{1}^{x}$, then output 0 , otherwise output 1. Decryption succeeds with all but negligible probability since for all x, r it holds $\operatorname{Pr}\left[g^{z}=h^{y}\right]=\operatorname{Pr}[z=x y]=\frac{1}{q}$.
We can find the probability of decrypting the ciphertext correctly:

$$
\begin{gathered}
\left.\operatorname{Pr}\left[\operatorname{Dec}\left(c_{1}, c_{2}\right)=0 \mid b=0\right)\right]=\operatorname{Pr}\left[c_{1}^{x}=c_{2} \mid b=0\right]=1 \\
\operatorname{Pr}\left[\operatorname{Dec}\left(c_{1}, c_{2}\right)=1 \mid b=1\right]=\operatorname{Pr}\left[c_{1}^{x} \neq c_{2} \mid b=1\right] \\
=1-\operatorname{Pr}\left[c_{1}^{x}=c_{2} \mid b=1\right]=1-\operatorname{Pr}\left[g^{x y}=g^{z}\right]=1-\frac{1}{q} \\
\left(\frac{1}{q} \leq n e g l(n)\right)
\end{gathered}
$$

We now prove CPA-security of the above scheme Π under the DDH assumption. Let \mathcal{A} be an adversary against the CPA-security of the scheme. We construct an adversary A' for DDH which uses \mathcal{A} as a black-box. First, \mathcal{A}^{\prime} receives a DDH instance $\left(G, q, g, g^{x}, g^{x^{\prime}}, h\right.$) where either $h=g^{x x^{\prime}}$ (if $b=0$) or $h=g^{z}$ for $z \leftarrow Z_{q}$ uniformly random (if $b=1$). \mathcal{A}^{\prime} sends the public key $p k:=\left(G, q, g, g^{x}\right)$ to \mathcal{A}. W.l.o.g., we assume that \mathcal{A} outputs the two messages $m_{0}=0$ and $m_{1}=1$ (note, the message space is $\{0,1\})$. Then \mathcal{A}^{\prime} sends the challenge ciphertext $c^{*}:=\left(g^{x^{\prime}}, h\right)$ to \mathcal{A}. If $b=0$, then c^{*} looks like a proper encryption of m_{0}, if $b=1$, then c^{*} is an encryption of m_{1}. Thus, upon receiving \mathcal{A}^{\prime} s guess $b^{\prime}, \mathcal{A}^{\prime}$ outputs b^{\prime}. Assuming DDH is hard relative to \mathcal{G}, we get

$$
\begin{gathered}
\operatorname{negl}(n) \geq\left|\operatorname{Pr}\left[\mathcal{A}^{\prime}\left(G, q, g, g^{x}, g^{x^{\prime}}, g^{x x^{\prime}}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{\prime}\left(G, q, g, g^{x}, g^{x^{\prime}}, g^{z}\right)=1\right]\right| \\
=\left|1-\operatorname{Pr}\left[\mathcal{A}^{\prime}\left(G, q, g, g^{x}, g^{x^{\prime}}, g^{x x^{\prime}}\right)=0\right]-\operatorname{Pr}\left[\mathcal{A}^{\prime}\left(G, q, g, g^{x}, g^{x^{\prime}}, g^{z}\right)=1\right]\right|= \\
\left|1-\operatorname{Pr}\left[\operatorname{Pub} K_{A, \Pi}^{c p a}(n)=1 \mid b=0\right]-\operatorname{Pr}\left[P u b K_{A, \Pi}^{c p a}(n)=1 \mid b=1\right]\right|=\left|1-2 \operatorname{Pr}\left[P u b K_{A, \Pi}^{c p a}(n)=1\right]\right|
\end{gathered}
$$

for a negligible function negl. This implies CPA-security of the scheme Π :

$$
\operatorname{Pr}\left[P u b K_{A, \Pi}^{c p a}(n)=1\right] \leq \frac{1}{2}+\operatorname{negl}(n)
$$

