تحويل اصلى: ا خرداد ...|
مقدمهاى بر رمزنغارى

$$
\text { تمرين شماره } 9
$$

تحويل نهايى: 1 خرداد . . 14
مدرّس: دكتر شهرام خزائى

- Upload your answers on courseware with the name: StudentNumber.pdf
- Upload a PDF file. Image and zip formats are not accepted.
- Similar answers will not be graded.
- NO answers will be accepted via e-mail.
- You can't upload files bigger than 2 Mb , so you'd better type.
- Deadline time is always at $23: 55$ and will not be extended.
- You should submit your answers before soft deadline.
- You will lose 5 percent for each day delay if you submit within a week after soft deadline.
- You can not submit any time after hard deadline.
- This problem sets include 75 points.
- For any question contact Sara Sarfaraz via sarassm60@gmail.com.

Problem 1

(10 points) Consider the following key-exchange protocol:
(a) Alice chooses a random key k and a random string r both of length n, and sends $s=k \oplus r$ to Bob.
(b) Bob chooses a random string t of length n and sends $u=s \oplus t$ to Alice.
(c) Alice computes $w=u \oplus r$ and sends w to Bob.
(d) Alice outputs k and Bob computes $w \oplus t$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete break).

Problem 2

(20 Points) Prove that hardness of the CDH problem relative to \mathcal{G} implies hardness of the discrete-logarithm problem relative to \mathcal{G}, and that hardness of the DDH problem relative to \mathcal{G} implies hardness of the CDH problem relative to \mathcal{G}.

Problem 3

(25 points) Consider the following variant of El Gamal encryption. Let $p=2 q+1$, let G be the group of squares modulo p (so G is a subgroup of \mathbb{Z}_{p}^{*} of order q), and let g be a generator of G. The private key is (G, q, g, x) and the public key is (G, q, g, h), where $h=g^{x}$ and $x \in \mathbb{Z}_{q}$ is chosen uniformly. To encrypt a message $m \in \mathbb{Z}_{q}$, choose a uniform $r \in \mathbb{Z}_{q}$, compute $c_{1}=g^{r} \bmod \mathrm{p}$ and $c_{2}=h^{r}+m \bmod p$, and let the ciphertext be $\left(c_{1}, c_{2}\right)$. Is this scheme CPA-secure? Prove your answer.

Problem 4

(20 points) Consider the following public-key encryption scheme. The public key is (G, q, g, h) and the private key is x, generated exactly as in the El Gamal encryption scheme. In order to encrypt a bit b, the sender does the following:

- If $b=0$ then choose a uniform $y \in \mathbb{Z}_{q}$ and compute $c_{1}=g^{y}$ and $c_{2}=h^{y}$. The ciphertext is $\left(c_{1}, c_{2}\right)$.
- If $b=1$ then choose independent uniform $y, z \in \mathbb{Z}_{q}$, compute $c_{1}=g^{y}$ and $c_{2}=g^{z}$, and set the ciphertext equal to $\left(c_{1}, c_{2}\right)$.
(a) Show that with high probability we can decrypt the ciphertext efficiently given knowledge of x. Specifically, show how to decrypt a bit that is encrypted correctly.
(b) Prove that this encryption scheme is CPA-secure if the decision Diffie-Hellman problem is hard relative to G.

