

- This problem sets include 55 points.
- For any question contact Sara Sarfaraz via sarassm60@gmail.com.

Problem 1

(20 points) Let F be a strong pseudorandom permutation, and define the following fixed-length encryption scheme: On input a message $m \in\{0,1\}^{n / 2}$ and key $k \in\{0,1\}^{n}$, algorithm Enc chooses a uniform $r \in\{0,1\}^{n / 2}$ and outputs the ciphertext $c:=\mathrm{F}_{k}(m \| r)$. Prove that this scheme is CCA-secure.

Solution We prove the security by contradiction. Assume an adversary \mathcal{A} with nonnegligible advantage in CCA-security game. We construct a distinguisher \mathcal{D} to attack F with non-negligible advantage. On any encryption query from \mathcal{A} (like m), the algorithm \mathcal{D} generates a random number r, queries F on $m \| r$ and gives the answer to A . On any decryption queries from \mathcal{A} like c, \mathcal{D} queries F^{-1} on c and gives the first half of the output back to \mathcal{A}. At the end, on input m_{0}, m_{1} from \mathcal{A}, \mathcal{D} chooses a random bit b and returns $\mathrm{F}_{k}\left(m_{b}| | r\right)$ to \mathcal{A}. If \mathcal{A} can not guess b correctly, then \mathcal{D} guesses random permutation, otherwise it guesses F_{k}.
It's clear that the following probabilities are equal:

$$
\operatorname{Pr}\left[\mathcal{D}^{\mathrm{F}_{k}(\cdot), \mathrm{F}_{k}^{-1}(\cdot)}\left(1^{n}\right)=1\right]=\operatorname{Pr}\left[\operatorname{PrivK} \mathcal{A}^{\mathrm{CCA}}=1\right]
$$

so we have:

$$
\begin{gathered}
\operatorname{Adv}(\mathcal{D})=\operatorname{Pr}\left[\mathcal{D}^{\mathrm{F}_{k}(\cdot), \mathrm{F}_{k}^{-1}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{D}^{f(\cdot), f^{-1}(.)}\left(1^{n}\right)=1\right] \\
=\operatorname{Pr}\left[\mathcal{D}^{\mathrm{F}_{k}(\cdot), \mathrm{F}_{k}^{-1}(\cdot)}\left(1^{n}\right)=1\right]-\frac{1}{2}
\end{gathered}
$$

so \mathcal{D} has non-negligible advantage which contradicts the assumption about F being a pseudorandom permutation. Therefore, our scheme is CCA-secure.

Problem 2

(20 Points) Let F be a pseudorandom function. In each of the following cases, prove or disprove the security of the given MAC. (In each case Gen outputs a uniform $k \in\{0,1\}^{n}$. Let $\langle i\rangle$ denote an $n / 2$-bit encoding of the integer i.)
(a) To authenticate a message $m=m_{1}, \ldots, m_{l}$, where $m_{i} \in\{0,1\}^{n / 2}$, compute $t:=\mathrm{F}_{k}\left(\langle 1\rangle \| m_{1}\right) \oplus \ldots \oplus \mathrm{F}_{k}\left(\langle l\rangle \| m_{l}\right)$.

Solution This scheme is not secure. We construct an adversary \mathcal{A} for the MAC. On input $1^{n}, \mathcal{A}$ queries $m_{0}=0^{n}, m_{1}=0^{n / 2} 1^{n / 2}$ and $m_{2}=1^{n}$. We denote the tags as t_{0}, t_{1} and t_{2}. Now it holds that

$$
\begin{gathered}
t_{0} \oplus t_{1} \oplus t_{2}= \\
\left(\mathrm { F } _ { k } (\langle 1 \rangle \| 0 ^ { n / 2 }) \oplus \left(\left(\mathrm { F } _ { k } (\langle 2 \rangle \| 0 ^ { n / 2 }) \oplus \left(\mathrm { F } _ { k } (\langle 1 \rangle \| 0 ^ { n / 2 }) \oplus \left(\left(\mathrm { F } _ { k } (\langle 2 \rangle \| 1 ^ { n / 2 }) \oplus \left(\mathrm { F } _ { k } (\langle 1 \rangle \| 1 ^ { n / 2 }) \oplus \left(\left(\mathrm{F}_{k}\left(\langle 2\rangle \| 1^{n / 2}\right)\right.\right.\right.\right.\right.\right.\right.\right.\right. \\
=\left(\mathrm { F } _ { k } (\langle 1 \rangle \| 1 ^ { n / 2 }) \oplus \left(\left(\mathrm{F}_{k}\left(\langle 2\rangle \| 0^{n / 2}\right)=\mathrm{MAC}_{k}\left(1^{n / 2} 0^{n / 2}\right)\right.\right.\right.
\end{gathered}
$$

Therefore, \mathcal{A} outputs $\left(1^{n / 2} 0^{n / 2}, t_{0} \oplus t_{1} \oplus t_{2}\right)$ and wins with probability 1.
(b) To authenticate a message $m=m_{1}, \ldots, m_{l}$, where $m_{i} \in\{0,1\}^{n / 2}$, choose uniform $r \leftarrow\{0,1\}^{n}$, compute $t:=\mathrm{F}_{k}(r) \oplus \mathrm{F}_{k}\left(\langle 1\rangle \| m_{1}\right) \oplus \ldots \oplus \mathrm{F}_{k}\left(\langle l\rangle \| m_{l}\right)$, and let the tag be the pair of $\langle r, t\rangle$.

Solution This schemes in not secure. We construct an adversary \mathcal{A} for the MAC.
Let $m \in\{0,1\}^{n / 2}$ be an arbitrary message. Then \mathcal{A} outputs $\left(m,\left(\langle 1\rangle \| m, 0^{n}\right)\right)$. This is a valid message-tag pair as MAC could choose $r=\langle 1\rangle \| m$ and output
$t=\left(r, \mathrm{~F}_{k}(r) \oplus \mathrm{F}_{k}(\langle 1\rangle \| m)\right)=\left(r, 0^{n}\right)$
Consequently, \mathcal{A} wins with probability 1.

Problem 3

(15 points) Show that the CBC mode of encryption does not yield CCA-secure encryption.
Solution We construct an adversary \mathcal{A} with non-negligible advantage in attacking the system. The adversary queries the challenger on $m_{0}=0^{2 n}, m_{1}=1^{2 n}$ and recieves $\left(c_{0}, c_{1}, c_{2}\right)$ which is the encryption of m_{b}. Then, \mathcal{A} queries the decryption oracle on $\left(c_{0}, c_{1}, c_{3}\right)$ such that $c_{3} \neq c_{2}$ to get the plaintext $\left(m_{0}^{\prime}, m_{1}^{\prime}\right)$. We can easily see that:

$$
m_{0}^{\prime}=\mathrm{E}_{k}^{-1}\left(c_{1}\right) \oplus c_{0}
$$

So \mathcal{A} outputs $b^{\prime}=1$ if $m_{0}^{\prime}=1^{n}$ and otherwise $b^{\prime}=0$ and wins the game with probability 1.

Problem 4 (Optional)

(20 points) Let (S, V) be a secure MAC defined over (K, M, T) where $T=\{0,1\}^{n}$. Define a new MAC (S_{2}, V_{2}) as follows:
$S_{2}(k, m)$ is the same as $S(k, m)$, except that the last eight bits of theoutput tag t are truncated. That is, S_{2} outputs tags in $\{0,1\}^{n-8}$. Algorithm $V_{2}\left(k, m, t^{\prime}\right)$ accepts if there is some $b \in\{0,1\}^{8}$ for which $V\left(k, m, t^{\prime}| | b\right)$ accepts. Is $\left(S_{2}, V_{2}\right)$ a secure MAC? Give an attack or argue security.

Solution Let Π denote the system (S, V) and Π^{\prime} denote $\left(S_{2}, V_{2}\right)$. We prove the security of Π^{\prime} by contradiction.
Let \mathcal{A}^{\prime} be an adversary for Π^{\prime} with a non-negligible advantage. We construct an adversay \mathcal{A} for Π. On each query from \mathcal{A}^{\prime}, the adversary \mathcal{A} queries its challenger on the same text and returns the output except the last 8 bits of it to \mathcal{A}^{\prime}. Then, when \mathcal{A}^{\prime} outputs the (m, t) pair, \mathcal{A} generates 8 random bits and concat them to the end of the output tag to obtain t^{\prime}. At the end, \mathcal{A} outputs $\left(m, t^{\prime}\right)$. considering that the probability of the random 8 bits to be exactly as the same as the last 8 bits of the correct tag is $\frac{1}{2^{8}}$, we have:

$$
\left.\left.\operatorname{Adv}(\mathcal{A})=\operatorname{Pr}\left[\operatorname{MacForge}_{\mathcal{A}, \Pi}=1\right)\right]=\frac{1}{2^{8}} \operatorname{Pr}\left[\operatorname{MacForge}_{\mathcal{A}^{\prime}, \Pi^{\prime}}=1\right)\right]=\frac{1}{2^{8}} \operatorname{Adv}\left(\mathcal{A}^{\prime}\right)
$$

which is non-negligible and contradicts our assumption on the security of Π. Therefore, Π^{\prime} is also a secure scheme.

