

- This problem sets include 55 points.
- For any question contact Sara Sarfaraz via sarassm60@gmail.com.

Problem 1

(20 points) Let F be a strong pseudorandom permutation, and define the following fixed-length encryption scheme: On input a message $m \in \{0, 1\}^{n/2}$ and key $k \in \{0, 1\}^n$, algorithm Enc chooses a uniform $r \in \{0, 1\}^{n/2}$ and outputs the ciphertext $c := \mathsf{F}_k(m||r)$. Prove that this scheme is CCA-secure.

Solution We prove the security by contradiction. Assume an adversary \mathcal{A} with nonnegligible advantage in CCA-security game. We construct a distinguisher \mathcal{D} to attack F with non-negligible advantage. On any encryption query from \mathcal{A} (like m), the algorithm \mathcal{D} generates a random number r, queries F on m||r and gives the answer to A . On any decryption queries from \mathcal{A} like c, \mathcal{D} queries F^{-1} on c and gives the first half of the output back to \mathcal{A} . At the end, on input m_0, m_1 from \mathcal{A} , \mathcal{D} chooses a random bit band returns $\mathsf{F}_k(m_b||r)$ to \mathcal{A} . If \mathcal{A} can not guess b correctly, then \mathcal{D} guesses random permutation, otherwise it guesses F_k .

It's clear that the following probabilities are equal:

$$\Pr[\mathcal{D}^{\mathsf{F}_k(.),\mathsf{F}_k^{-1}(.)}(1^n) = 1] = \Pr[\mathsf{PrivK}_{\mathcal{A}}^{\mathsf{CCA}} = 1]$$

so we have:

$$\mathsf{Adv}(\mathcal{D}) = \Pr[\mathcal{D}^{\mathsf{F}_k(.),\mathsf{F}_k^{-1}(.)}(1^n) = 1] - \Pr[\mathcal{D}^{f(.),f^{-1}(.)}(1^n) = 1]$$
$$= \Pr[\mathcal{D}^{\mathsf{F}_k(.),\mathsf{F}_k^{-1}(.)}(1^n) = 1] - \frac{1}{2}$$

so \mathcal{D} has non-negligible advantage which contradicts the assumption about F being a pseudorandom permutation. Therefore, our scheme is CCA-secure.

Problem 2

(20 Points) Let F be a pseudorandom function. In each of the following cases, prove or disprove the security of the given MAC. (In each case Gen outputs a uniform $k \in \{0, 1\}^n$. Let $\langle i \rangle$ denote an n/2-bit encoding of the integer i.)

(a) To authenticate a message $m = m_1, ..., m_l$, where $m_i \in \{0, 1\}^{n/2}$, compute $t := \mathsf{F}_k(\langle 1 \rangle || m_1) \oplus ... \oplus \mathsf{F}_k(\langle l \rangle || m_l)$.

Solution This scheme is not secure. We construct an adversary \mathcal{A} for the MAC. On input 1^n , \mathcal{A} queries $m_0 = 0^n$, $m_1 = 0^{n/2}1^{n/2}$ and $m_2 = 1^n$. We denote the tags as t_0 , t_1 and t_2 . Now it holds that

$$\begin{split} t_0 \oplus t_1 \oplus t_2 &= \\ (\mathsf{F}_k(\langle 1 \rangle || 0^{n/2}) \oplus ((\mathsf{F}_k(\langle 2 \rangle || 0^{n/2}) \oplus (\mathsf{F}_k(\langle 1 \rangle || 0^{n/2}) \oplus ((\mathsf{F}_k(\langle 2 \rangle || 1^{n/2}) \oplus (\mathsf{F}_k(\langle 1 \rangle || 1^{n/2}) \oplus ((\mathsf{F}_k(\langle 2 \rangle || 1^{n/2}) \oplus (\mathsf{F}_k(\langle 2 \rangle || 1^{n/2}) \oplus (\mathsf{F}_k(\langle 2 \rangle || 1^{n/2}) \oplus (\mathsf{F}_k(\langle 2 \rangle || 1^{n/2}) \oplus \mathsf{F}_k(\langle 1 \rangle || 1^{n/2}) \oplus \mathsf{F}_k(\langle 1$$

Therefore, \mathcal{A} outputs $(1^{n/2}0^{n/2}, t_0 \oplus t_1 \oplus t_2)$ and wins with probability 1.

(b) To authenticate a message $m = m_1, ..., m_l$, where $m_i \in \{0, 1\}^{n/2}$, choose uniform $r \leftarrow \{0, 1\}^n$, compute $t := \mathsf{F}_k(r) \oplus \mathsf{F}_k(\langle 1 \rangle || m_1) \oplus ... \oplus \mathsf{F}_k(\langle l \rangle || m_l)$, and let the tag be the pair of $\langle r, t \rangle$.

Solution This schemes in not secure. We construct an adversary \mathcal{A} for the MAC. Let $m \in \{0, 1\}^{n/2}$ be an arbitrary message. Then \mathcal{A} outputs $(m, (\langle 1 \rangle || m, 0^n))$. This is a valid message-tag pair as MAC could choose $r = \langle 1 \rangle || m$ and output $t = (r, \mathsf{F}_k(r) \oplus \mathsf{F}_k(\langle 1 \rangle || m)) = (r, 0^n)$ Consequently, \mathcal{A} wins with probability 1.

Problem 3

(15 points) Show that the CBC mode of encryption does not yield CCA-secure encryption.

Solution We construct an adversary \mathcal{A} with non-negligible advantage in attacking the system. The adversary queries the challenger on $m_0 = 0^{2n}, m_1 = 1^{2n}$ and recieves (c_0, c_1, c_2) which is the encryption of m_b . Then, \mathcal{A} queries the decryption oracle on (c_0, c_1, c_3) such that $c_3 \neq c_2$ to get the plaintext (m'_0, m'_1) . We can easily see that:

$$m_0' = \mathsf{E}_k^{-1}(c_1) \oplus c_0$$

So \mathcal{A} outputs b' = 1 if $m'_0 = 1^n$ and otherwise b' = 0 and wins the game with probability 1.

۴_۲

Problem 4 (Optional)

(20 points) Let (S, V) be a secure MAC defined over (K, M, T) where $T = \{0, 1\}^n$. Define a new MAC (S_2, V_2) as follows:

 $S_2(k,m)$ is the same as S(k,m), except that the last eight bits of theoutput tag t are truncated. That is, S_2 outputs tags in $\{0,1\}^{n-8}$. Algorithm $V_2(k,m,t')$ accepts if there is some $b \in \{0,1\}^8$ for which V(k,m,t'||b) accepts. Is (S_2, V_2) a secure MAC? Give an attack or argue security.

Solution Let Π denote the system (S, V) and Π' denote (S_2, V_2) . We prove the security of Π' by contradiction.

Let \mathcal{A}' be an adversary for Π' with a non-negligible advantage. We construct an adversary \mathcal{A} for Π . On each query from \mathcal{A}' , the adversary \mathcal{A} queries its challenger on the same text and returns the output except the last 8 bits of it to \mathcal{A}' . Then, when \mathcal{A}' outputs the (m, t) pair, \mathcal{A} generates 8 random bits and concat them to the end of the output tag to obtain t'. At the end, \mathcal{A} outputs (m, t'). considering that the probability of the random 8 bits to be exactly as the same as the last 8 bits of the correct tag is $\frac{1}{2^8}$, we have:

$$\mathsf{Adv}(\mathcal{A}) = \Pr[\mathsf{MacForge}_{\mathcal{A},\Pi} = 1)] = \frac{1}{2^8} \Pr[\mathsf{MacForge}_{\mathcal{A}',\Pi'} = 1)] = \frac{1}{2^8} \mathsf{Adv}(\mathcal{A}')$$

which is non-negligible and contradicts our assumption on the security of Π . Therefore, Π' is also a secure scheme.