

FY . . تحويل اصلى: ¢ فروردين	مقدمهاى بر رمزنگارى
تمرين شماره	
	ملرّس: دكتر شهر\|م

- Upload your answers on courseware with the name: StudentNumber.pdf
- Upload a PDF file. Image and zip formats are not accepted.
- Similar answers will not be graded.
- NO answers will be accepted via e-mail.
- You can't upload files bigger than 2 Mb , so you'd better type.
- Deadline time is always at $23: 55$ and will not be extended.
- You should submit your answers before soft deadline.
- You will lose 5 percent for each day delay if you submit within a week after soft deadline.
- You can not submit any time after hard deadline.
- This problem set includes 55 points.
- For any questions contact Elahe Kooshafar via cyberian.eli@gmail.com.

Problem 1

(15 points) Consider a symmetric encryption system that by receiving an n-bit message m, replaces each bit " 0 " of the message with bits " 01 " and each bit " 1 " with bits " 00 " or " 11 " at random, then encrypts the result with an $2 n$-bit key using the OTP method. First explain the decryption algorithm and then show that this encryption system is not multi-message secure.

Problem 2

(20 points) Suppose that $\left\{f_{k}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}\right\}_{k \in\{0,1\}^{n}}$ is a family of pseudo-random functions. Consider an encyption system that its encryption algorithm is as follows:

$$
\operatorname{Enc}_{k}(m)= \begin{cases}\left(r, f_{k}(r) \oplus m, f_{k}\left(0^{n}\right)\right) & \text { if } m \neq f_{k}\left(0^{n}\right) \\ \left(r, f_{k}(r) \oplus m, k\right) & \text { if } m=f_{k}\left(0^{n}\right)\end{cases}
$$

where r is randomly selected from n-bit strings. Show that this encryption system is multi-message secure but not CPA secure.

Problem 3

(20 points) For a given PRG $G: S \rightarrow\{0,1\}^{L}$, and a given adversary \mathcal{A}, consider the following attack game:

- the adversary sends an index i, with $0 \leq i \leq L-1$, to the challenger.
- the challenger chooses a random s from S and computes $r=G(s)$ and sends $r[0], r[1], \ldots, r[i-1]$ to the adversary. $(r[i]$ is the i 'th bit of $r)$
- the adversary outputs $g \in\{0,1\}$.

We say that \mathcal{A} wins if $r[i]=g$, and we define \mathcal{A} 's advantage to be:

$$
\left.A d v_{\mathcal{A}, G}^{\mathrm{Pre}}=\left\lvert\, \operatorname{Pr}[\mathcal{A} \text { wins }]-\frac{1}{2}\right. \right\rvert\,
$$

We say that G is unpredictable if the value $A d v_{\mathcal{A}, G}^{\mathrm{Pre}}$ is negligible for all p.p.t adversaries \mathcal{A}. Show that if G is secure, then it is unpredictable.

$$
r_{-}
$$

