

## دانشكدهى علوم رياضى

مقدمهاى بر رمزنگارى


نگارنله: آيسان نيشابورى

- Upload your answers on courseware with the name: StudentNumber.pdf
- Upload a PDF file. Image and zip formats are not accepted.
- Similar answers will not be graded.
- NO answers will be accepted via e-mail.
- You can't upload files bigger than 2 Mb , so you'd better type.
- Deadline time is always at 23:55 and will not be extended.
- You should submit your answers before soft deadline.
- You will lose 5 percent for each day delay if you submit within a week after soft deadline.
- You can not submit any time after hard deadline.
- This problem set includes 55 points.
- For any question contact Aysan Nishaburi via aysannishaburi@gmail.com.


## Problem 1

Let $\left\{p_{k}\right\}_{k \in\{0,1\}^{*}}$ be a pseudorandom permutation collection, where for $k \in\{0,1\}^{n}, p_{k}$ is a permutation over $\{0,1\}^{m}$.

1. (10 Points) Consider the following encryption scheme $(E, D): E_{k}(x)=p_{k}(x)$, $D_{k}(y)=p_{k}^{-1}(y)$. Prove that this scheme is not a CPA-secure encryption.

## Solution:

We describe the distinguisher $\mathcal{D}$ such that it outputs the two messages $m_{0}$ and $m_{1}$ such that $m_{0} \neq m_{1}$, we know that a uniform bit $b$ is chosen and $c \leftarrow E_{k}\left(m_{b}\right)$ is computed and given to $\mathcal{D}$. Now $\mathcal{D}$ has oracle access to the function so $\mathcal{D}$ queries it's oracle $\mathcal{O}$ on $m_{1}$ and receives $E\left(m_{1}\right)$.
$\mathcal{D}$ outputs 1 if $E\left(m_{1}\right)=c$ and 0 otherwise. This distinguisher always wins because if $m_{b}=m_{1}$ then $c$ will always be equal to $E_{k}\left(m_{b}\right)$ because the encryption described is deterministic, more so if $m_{b}=m_{0}$ then $\mathcal{D}$ will never output 1 because $p_{k}$ is a pseudorandom permutation and can't map $m_{1}$ and $m_{0}$ to the same value. So the advantage of this distinguisher is

$$
\left|\operatorname{Pr}\left[\operatorname{out}_{\mathcal{D}}\left(\operatorname{PrivK}_{\mathcal{D}, \Pi}^{\text {eav }}(n, 0)\right)=1\right]-\operatorname{Pr}\left[\operatorname{out}_{\mathcal{D}}\left(\operatorname{PrivK}_{\mathcal{D}, \Pi}^{\text {eav }}(n, 1)\right)=1\right]\right|=|0-1|=1
$$

which is not negligible so we have proven this scheme is not CPA secure.
2. (10 Points) Consider the following scheme $(E, D)$ that encrypts $m / 2$-bit messages in the following way: on input $x \in\{0,1\}^{m / 2}, E_{k}$ chooses random $r \leftarrow_{R}\{0,1\}^{m / 2}$ and outputs $p_{k}(x, r)$ (where comma denotes concatenation), on input $y \in\{0,1\}^{m}$, $D_{k}$ computes $(x, r)=p_{k}^{-1}(y)$ and outputs $x$. Prove that $(E, D)$ is a CPA-secure encryption scheme.

## Solution:

First we observe that if there was a random permutation like $q$ instead of $p_{k}$ then the scheme described would be CPA-secure. The reason for this is to encrypt we would just concat random numbers and so, any query that a distinguisher would ask would give it no information since the permutation is completely random. So any output from the distinguisher will have the chance of $\frac{1}{2}$ of winning. That means

$$
\operatorname{Pr}\left[\mathcal{D}^{q(.)}\left(1^{n}\right)\right]=\frac{1}{2}
$$

Now we imagine that a distinguisher such as $\mathcal{D}$ for the scheme in our question. We
use reduction to show that if the scheme described is not CPA-secure then we can construct a distinguisher $\mathcal{D}^{\prime}$ that can distinguish $p_{k}$ from a random permutation. We build $\mathcal{D}^{\prime}$ such that it runs $\mathcal{D}$ and whenever $\mathcal{D}$ requests an encryption of $m$, $\mathcal{D}^{\prime}$ chooses a random string $r \in\{0,1\}^{m / 2}$ and queries it's oracle $\mathcal{O}$ on $(m, r)$ and gives $\mathcal{O}(m, r)$ to $\mathcal{D}$. When $\mathcal{D}$ outputs $m_{0}$ and $m_{1}, \mathcal{D}^{\prime}$ chooses a random bit $b$ and chooses a random string $r \in\{0,1\}^{m / 2}$ and returns it to $\mathcal{D}$. At the end when $\mathcal{D}$ makes a decision and outputs it, $\mathcal{D}^{\prime}$ outputs the same decision.
Now we have

$$
\operatorname{Pr}_{k \leftarrow\{0,1\}^{n}}\left[\mathcal{D}^{\prime p_{k}(.)}\left(1^{n}\right)=1\right]=\operatorname{Pr}\left[\operatorname{PrivK}_{\mathcal{D}, \Pi}^{\mathrm{cpa}}(n)=1\right]
$$

And as we said before

$$
\operatorname{Pr}_{k \leftarrow\{0,1\}^{n}}\left[\mathcal{D}^{\prime q(.)}\left(1^{n}\right)=1\right]=\frac{1}{2}
$$

So we have

$$
\begin{gathered}
\left|\operatorname{Pr}\left[\operatorname{PrivK}_{\mathcal{D}, \Pi}^{\mathrm{cpa}}(n)=1\right]-\frac{1}{2}\right|= \\
\left|\operatorname{Pr}_{k \leftarrow\{0,1\}^{n}}\left[\mathcal{D}^{\prime p_{k}(.)}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{k \leftarrow\{0,1\}^{n}}\left[\mathcal{D}^{\prime q(\cdot)}\left(1^{n}\right)=1\right]\right| \leq \operatorname{negl}(n)
\end{gathered}
$$

And this gives us

$$
\operatorname{Pr}\left[\operatorname{PrivK}_{\mathcal{D}, \Pi}^{\mathrm{cpa}}(n)=1\right] \leq \frac{1}{2}+\operatorname{negl}(n)
$$

which shows that the scheme described is CPA-secure.

## Problem 2

(25 Points) Suppose that $\left\{F_{S}:\{0,1\}^{k} \rightarrow\{0,1\}^{k} \mid S \in\{0,1\}^{k}\right\}$ is a pseudo-random family of functions from $k$-bit input to $k$-bit output, indexed by $k$-bit key ("seed"). We would like to get a new pseudo-random function family in which each function maps $k$ bits to $2 k$ bits. Consider the following construction, and for each show whether it is good or bad (namely whether the specified family is pseudo-random or not).

1. $F_{S}^{1}(x)=F_{S}\left(0^{k}\right) \| F_{S}(x)$

## Solution:

$F_{S}^{1}$ is not a pseudorandom function. Consider the distinguisher $\mathcal{D}_{1}$, that queries it's oracle $\mathcal{O}$ on any arbitrary $x_{1}$ and $x_{2}$ such that $x_{1} \neq x_{2}$ and receives the values $y_{1}=\mathcal{O}\left(x_{1}\right)$ and $y_{2}=\mathcal{O}\left(x_{2}\right)$, and outputs 1 if the first $k$ bits of $y_{1}$ and $y_{2}$ are equal and 0 if they are not.
If $\mathcal{O}=F_{S}^{1}$ then $\mathcal{D}_{1}$ will always output 1 but if $\mathcal{O}=f$ where $f$ is chosen uniformly from the set of all functions mapping $k$-bit strings to $2 k$-bit strings, then the probability that $\mathcal{D}_{1}$ outputs 1 is equal to the probability that the first $k$ bits of

$$
r_{\_}
$$

$f\left(x_{1}\right)$ is equal to the first $k$ bits of $f\left(x_{2}\right)$ which happens with the probability of $2^{-k}$, so

$$
\left|\operatorname{Pr}\left[\mathcal{D}_{1}^{F_{S}^{1}(.)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{D}_{1}^{f(.)}\left(1^{n}\right)=1\right]\right|=\left|1-2^{-k}\right|
$$

which is not negligible.
2. $F_{S}^{2}(x)=F_{S}(x) \| F_{S}(\bar{x})$

## Solution:

$F_{S}^{2}$ is not a pseudorandom function. Consider the distinguisher $\mathcal{D}_{2}$, that queries it's oracle $\mathcal{O}$ on any arbitrary $x$ and $\bar{x}$ and receives the values $y_{1} \| y_{2}=y=\mathcal{O}(x)$ where $\left|y_{1}=y_{2}\right|$ and $z_{1}| | z_{2}=z=\mathcal{O}(\bar{x})$ where $\left|z_{1}\right|=\left|z_{2}\right|$, and outputs 1 if $z_{1}=y_{2}$ and $z_{2}=y_{1}$ and 0 if it is not.
If $\mathcal{O}=F_{S}^{2}$ then $\mathcal{D}_{2}$ will output 1 with the probability of 1 , but if $\mathcal{O}=f$ where $f$ is chosen uniformly from the set of all functions mapping $k$-bit strings to $2 k$-bit strings, then the probability that $\mathcal{D}_{2}$ outputs 1 is equal to the probability that $y_{2} \| y_{1}=f(\bar{x})$ which happens with the probability of $2^{-2 k}$, so

$$
\left|\operatorname{Pr}\left[\mathcal{D}_{2}^{F_{S}^{2}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{D}_{2}^{f(.)}\left(1^{n}\right)=1\right]\right|=\left|1-2^{-2 k}\right|
$$

which is not negligible.
3. $F_{S}^{3}(x)=F_{0^{k}}(x) \| F_{S}(x)$

## Solution:

$F_{S}^{3}$ is not a pseudorandom function. Consider the distinguisher $\mathcal{D}_{3}$, that queries it's oracle $\mathcal{O}$ on any arbitrary $x$ and receives the values $y=\mathcal{O}(x)$. Now the distinguisher $\mathcal{D}_{3}$ independently calculates $F_{0^{k}}(x)=x^{\prime}$, and outputs 1 if the first $k$ bits of $y$ is equal to $x^{\prime}$, and 0 if it is not.
If $\mathcal{O}=F_{S}^{3}$ then $\mathcal{D}_{3}$ will output 1 with the probability of 1 , but if $\mathcal{O}=f$ where $f$ is chosen uniformly from the set of all functions mapping $k$-bit strings to $2 k$-bit strings, then the probability that $\mathcal{D}_{3}$ outputs 1 is equal to the probability that the first $k$ bits of $f(x)$ are equal to $x^{\prime}$ which happens with the probability of $2^{-k}$, so

$$
\left|\operatorname{Pr}\left[\mathcal{D}_{3}^{F_{S}^{3}(.)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{D}_{3}^{f(.)}\left(1^{n}\right)=1\right]\right|=\left|1-2^{-k}\right|
$$

which is not negligible.
4. $F_{S}^{4}(x)=F_{S_{1}}(x) \| F_{S_{2}}(x)$, where $S_{1}=F_{S}\left(0^{k}\right)$ and $S_{2}=F_{S}\left(1^{k}\right)$

## Solution:

Let us define $R_{1}, R_{2}$ and $R=\left(R_{1} \| R_{2}\right)$ random functions such that $R_{1}:\{0,1\}^{k} \rightarrow$ $\{0,1\}^{k}, R_{2}:\{0,1\}^{k} \rightarrow\{0,1\}^{k}$ and $R_{3}:\{0,1\}^{k} \rightarrow\{0,1\}^{2 k}$. We also define the functions $g_{1}, g_{2}$ and $g=\left(g_{1}| | g_{2}\right)$ such that $g_{1}=F_{S_{3}}, g_{2}=F_{S_{4}}$ and $g=\left(F_{S_{3}} \| F_{S_{4}}\right)$
where $S_{3}$ and $S_{4}$ are chosen randomly from $\{0,1\}^{k}$.
We claim that $F_{S}^{4}$ is a pseudorandom function. Suppose that it is not. Hence there is a distinguisher $\mathcal{A}$ such that

$$
\left|\operatorname{Pr}\left[\mathcal{A}^{F_{S}^{4}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f(.)}\left(1^{n}\right)=1\right]\right|>\operatorname{negl}(n)
$$

where $f$ is chosen uniformly from the set of all functions mapping $k$-bit strings to $2 k$-bit strings.
Now we use $\mathcal{A}$ to build a distinguisher $\mathcal{B}$ for $F_{S}$. $\mathcal{B}$ works such that given the oracle $\mathcal{O}$, it choses the random $i \in\{1,2,3\}$ and outputs $\mathcal{A}^{f_{i}(.)}\left(1^{n}\right)$ such that $f_{1}=F_{\mathcal{O}\left(0^{k}\right)}\left\|F_{\mathcal{O}\left(1^{k}\right)}, f_{2}=g_{1}\right\| \mathcal{O}$ and $f_{3}=\mathcal{O} \| R_{2}$.
If $\mathcal{O}=F_{S}$ we will have

$$
\begin{aligned}
& f_{1}=\left(F_{F_{S}\left(0^{k}\right)} \| F_{F_{S}\left(1^{k}\right)}\right)=\left(F_{S_{1}} \| F_{S_{2}}\right)=F_{S}^{4} \\
& f_{2}=\left(g_{1} \| F_{S}\right) \approx\left(F_{S_{3}} \| F_{S_{4}}\right) \approx\left(g_{1} \| g_{2}\right) \approx g
\end{aligned}
$$

because $S$ like $S_{4}$ is chosen randomly from $\{0,1\}^{k}$ and

$$
f_{3}=\left(F_{S} \| R_{2}\right) \approx\left(F_{S_{3}} \| R_{2}\right) \approx\left(g_{1} \| R_{2}\right)
$$

because $S$ like $S_{3}$ is chosen randomly from $\{0,1\}^{k}$.
But if $\mathcal{O}$ is a random function we will have

$$
f_{1} \approx\left(F_{S_{5}} \| F_{S_{6}}\right)
$$

where $S_{5}$ and $S_{6}$ (like $S_{3}$ and $S_{4}$ ) are randomly chosen from $\{0,1\}^{k}$. So

$$
\begin{gathered}
f_{1} \approx\left(F_{S_{3}} \| F_{S_{4}}\right) \approx\left(g_{1} \| g_{2}\right) \approx g \\
f_{2}=\left(g_{1} \| \mathcal{O}\right) \approx\left(g_{1} \| R_{2}\right) \\
f_{3}=\left(\mathcal{O} \| R_{2}\right) \approx\left(R_{1} \| R_{2}\right) \approx R
\end{gathered}
$$

Now we write the advantage of $\mathcal{B}$ as

$$
\begin{gathered}
\left.\frac{1}{3} \right\rvert\, \operatorname{Pr}\left[\mathcal{A}^{F_{S}^{4}(.)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{g(.)}\left(1^{n}\right)=1\right]+\operatorname{Pr}\left[\mathcal{A}^{g(.)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{\left(g_{1} \| R_{2}\right)(.)}\left(1^{n}\right)=1\right]+ \\
\left.\operatorname{Pr}\left[\mathcal{A}^{\left(g_{1} \| R_{2}\right)(.)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{R(.)}\left(1^{n}\right)=1\right]\left|=\frac{1}{3}\right| \operatorname{Pr}\left[\mathcal{A}^{F_{S}^{4}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{R(.)}\left(1^{n}\right)=1\right] \right\rvert\,= \\
\frac{1}{3}\left|\operatorname{Pr}\left[\mathcal{A}^{F_{S}^{4}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{f(.)}\left(1^{n}\right)=1\right]\right|>\frac{1}{3} \operatorname{negl}(n)
\end{gathered}
$$

which means $\mathcal{B}$ has non negligible advantage which is not possible since $\mathcal{B}$ is a distinguisher for $F_{S}$ which was considered to be pseudorandom.

## Problem 3

What is the output of an $r$-round Feistel network when the input is $\left(L_{0}, R_{0}\right)$ in each of the following two cases:

1. (10 Points) Each round function outputs all 0's, regardless of the input.

## Solution:

The structure of a Feistel network is as follows

$$
\begin{gathered}
L_{i+1}=R_{i} \\
R_{i+1}=L_{i} \oplus F\left(R_{i}, K_{i}\right)
\end{gathered}
$$

So if in each round the function outputs all 0 's we will have

$$
\begin{aligned}
L_{i+1} & =R_{i} \\
R_{i+1} & =L_{i}
\end{aligned}
$$

This shows us that $R_{0}$ and $L_{0}$ just switch places in each round. So if $r$ is even the output of the Feistel network will be $\left(L_{0}, R_{0}\right)$, and $\left(R_{0}, L_{0}\right)$ if $r$ is odd.
2. (10 Points) Each round function is the identity function.

## Solution:

If each round's function is the identity function we will have

$$
\begin{gathered}
\left(L_{1}, R_{1}\right)=\left(R_{0}, L_{0} \oplus F\left(R_{0}, K_{0}\right)\right)=\left(R_{0}, L_{0} \oplus R_{0}\right) \\
\left(L_{2}, R_{2}\right)=\left(L_{0} \oplus R_{0}, R_{0} \oplus F\left(L_{0} \oplus R_{0}, K_{1}\right)\right)=\left(L_{0} \oplus R_{0}, R_{0} \oplus L_{0} \oplus R_{0}\right)=\left(L_{0} \oplus R_{0}, L_{0}\right) \\
\left(L_{3}, R_{3}\right)=\left(L_{0}, L_{0} \oplus R_{0} \oplus F\left(L_{0}, K_{2}\right)\right)=\left(L_{0}, L_{0} \oplus R_{0} \oplus L_{0}\right)=\left(L_{0}, R_{0}\right)
\end{gathered}
$$

So the output repeats itself after 3 rounds which gives us the output ( $L_{0}, R_{0}$ ) if $r$ $\bmod 3=0,\left(R_{0}, L_{0} \oplus R_{0}\right)$ if $r \bmod 3=1$ and $\left(L_{0} \oplus R_{0}, L_{0}\right)$ if $r \bmod 3=2$.

$$
9-r
$$

