

مقدمهای بر رمزنگاری پاسخنامه تمرین شماره ۲ نگارنده: آیسان نیشابوری

دانشکدهی علوم ریاضی

- Upload your answers on courseware with the name: StudentNumber.pdf
- Upload a PDF file. Image and zip formats are not accepted.
- Similar answers will not be graded.
- NO answers will be accepted via e-mail.
- You can't upload files bigger than 2 Mb, so you'd better type.
- Deadline time is always at 23:55 and will not be extended.
- You should submit your answers before soft deadline.
- You will lose 5 percent for each day delay if you submit within a week after soft deadline.
- You can not submit any time after hard deadline.
- This problem set includes 55 points.
- For any question contact Aysan Nishaburi via aysannishaburi@gmail.com.

Problem 1

Let $\{p_k\}_{k \in \{0,1\}^*}$ be a pseudorandom permutation collection, where for $k \in \{0,1\}^n$, p_k is a permutation over $\{0,1\}^m$.

1. (10 Points) Consider the following encryption scheme $(E, D) : E_k(x) = p_k(x)$, $D_k(y) = p_k^{-1}(y)$. Prove that this scheme is not a CPA-secure encryption.

Solution:

We describe the distinguisher \mathcal{D} such that it outputs the two messages m_0 and m_1 such that $m_0 \neq m_1$, we know that a uniform bit b is chosen and $c \leftarrow E_k(m_b)$ is computed and given to \mathcal{D} . Now \mathcal{D} has oracle access to the function so \mathcal{D} queries it's oracle \mathcal{O} on m_1 and receives $E(m_1)$.

 \mathcal{D} outputs 1 if $E(m_1) = c$ and 0 otherwise. This distinguisher always wins because if $m_b = m_1$ then c will always be equal to $E_k(m_b)$ because the encryption described is deterministic, more so if $m_b = m_0$ then \mathcal{D} will never output 1 because p_k is a pseudorandom permutation and can't map m_1 and m_0 to the same value. So the advantage of this distinguisher is

$$\left| \Pr\left[\operatorname{out}_{\mathcal{D}}(\operatorname{PrivK}_{\mathcal{D},\Pi}^{\mathsf{eav}}(n,0)) = 1 \right] - \Pr\left[\operatorname{out}_{\mathcal{D}}(\operatorname{PrivK}_{\mathcal{D},\Pi}^{\mathsf{eav}}(n,1)) = 1 \right] \right| = |0-1| = 1$$

which is not negligible so we have proven this scheme is not CPA secure.

2. (10 Points) Consider the following scheme (E, D) that encrypts m/2-bit messages in the following way: on input $x \in \{0, 1\}^{m/2}$, E_k chooses random $r \leftarrow_R \{0, 1\}^{m/2}$ and outputs $p_k(x, r)$ (where comma denotes concatenation), on input $y \in \{0, 1\}^m$, D_k computes $(x, r) = p_k^{-1}(y)$ and outputs x. Prove that (E, D) is a CPA-secure encryption scheme.

Solution:

First we observe that if there was a random permutation like q instead of p_k then the scheme described would be CPA-secure. The reason for this is to encrypt we would just concat random numbers and so, any query that a distinguisher would ask would give it no information since the permutation is completely random. So any output from the distinguisher will have the chance of $\frac{1}{2}$ of winning. That means

$$\Pr\left[\mathcal{D}^{q(.)}(1^n)\right] = \frac{1}{2}$$

Now we imagine that a distinguisher such as \mathcal{D} for the scheme in our question. We

use reduction to show that if the scheme described is not CPA-secure then we can construct a distinguisher \mathcal{D}' that can distinguish p_k from a random permutation. We build \mathcal{D}' such that it runs \mathcal{D} and whenever \mathcal{D} requests an encryption of m, \mathcal{D}' chooses a random string $r \in \{0,1\}^{m/2}$ and queries it's oracle \mathcal{O} on (m,r) and gives $\mathcal{O}(m,r)$ to \mathcal{D} . When \mathcal{D} outputs m_0 and m_1 , \mathcal{D}' chooses a random bit b and chooses a random string $r \in \{0,1\}^{m/2}$ and returns it to \mathcal{D} . At the end when \mathcal{D} makes a decision and outputs it, \mathcal{D}' outputs the same decision. Now we have

$$\Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}'^{p_k(.)}(1^n) = 1 \right] = \Pr\left[\operatorname{PrivK}_{\mathcal{D},\Pi}^{\mathsf{cpa}}(n) = 1 \right]$$

And as we said before

$$\Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}'^{q(.)}(1^n) = 1 \right] = \frac{1}{2}$$

1.

So we have

$$\left| \Pr\left[\operatorname{Priv} \mathbf{K}_{\mathcal{D},\Pi}^{\mathsf{cpa}}(n) = 1 \right] - \frac{1}{2} \right| = \\ \left| \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}'^{p_k(.)}(1^n) = 1 \right] - \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}'^{q(.)}(1^n) = 1 \right] \right| \le \operatorname{negl}(n)$$

And this gives us

$$\Pr\left[\operatorname{PrivK}_{\mathcal{D},\Pi}^{\mathsf{cpa}}(n) = 1\right] \le \frac{1}{2} + \operatorname{negl}(n)$$

which shows that the scheme described is CPA-secure.

Problem 2

(25 Points) Suppose that $\{F_S : \{0,1\}^k \to \{0,1\}^k | S \in \{0,1\}^k\}$ is a pseudo-random family of functions from k-bit input to k-bit output, indexed by k-bit key ("seed"). We would like to get a new pseudo-random function family in which each function maps k bits to 2k bits. Consider the following construction, and for each show whether it is good or bad (namely whether the specified family is pseudo-random or not).

1. $F_S^1(x) = F_S(0^k) ||F_S(x)||$

Solution:

 F_S^1 is not a pseudorandom function. Consider the distinguisher \mathcal{D}_1 , that queries it's oracle \mathcal{O} on any arbitrary x_1 and x_2 such that $x_1 \neq x_2$ and receives the values $y_1 = \mathcal{O}(x_1)$ and $y_2 = \mathcal{O}(x_2)$, and outputs 1 if the first k bits of y_1 and y_2 are equal and 0 if they are not.

If $\mathcal{O} = F_S^1$ then \mathcal{D}_1 will always output 1 but if $\mathcal{O} = f$ where f is chosen uniformly from the set of all functions mapping k-bit strings to 2k-bit strings, then the probability that \mathcal{D}_1 outputs 1 is equal to the probability that the first k bits of $f(x_1)$ is equal to the first k bits of $f(x_2)$ which happens with the probability of 2^{-k} , so

$$\left| Pr[\mathcal{D}_1^{F_S^{1}(.)}(1^n) = 1] - Pr[\mathcal{D}_1^{f(.)}(1^n) = 1] \right| = |1 - 2^{-k}|$$

which is not negligible.

2. $F_S^2(x) = F_S(x) ||F_S(\bar{x})|$

Solution:

 F_S^2 is not a pseudorandom function. Consider the distinguisher \mathcal{D}_2 , that queries it's oracle \mathcal{O} on any arbitrary x and \bar{x} and receives the values $y_1||y_2 = y = \mathcal{O}(x)$ where $|y_1 = y_2|$ and $z_1||z_2 = z = \mathcal{O}(\bar{x})$ where $|z_1| = |z_2|$, and outputs 1 if $z_1 = y_2$ and $z_2 = y_1$ and 0 if it is not.

If $\mathcal{O} = F_S^2$ then \mathcal{D}_2 will output 1 with the probability of 1, but if $\mathcal{O} = f$ where f is chosen uniformly from the set of all functions mapping k-bit strings to 2k-bit strings, then the probability that \mathcal{D}_2 outputs 1 is equal to the probability that $y_2||y_1 = f(\bar{x})$ which happens with the probability of 2^{-2k} , so

$$\left| Pr[\mathcal{D}_2^{F_S^2(.)}(1^n) = 1] - Pr[\mathcal{D}_2^{f(.)}(1^n) = 1] \right| = |1 - 2^{-2k}|$$

which is not negligible.

3. $F_S^3(x) = F_{0^k}(x) ||F_S(x)||$

Solution:

 F_S^3 is not a pseudorandom function. Consider the distinguisher \mathcal{D}_3 , that queries it's oracle \mathcal{O} on any arbitrary x and receives the values $y = \mathcal{O}(x)$. Now the distinguisher \mathcal{D}_3 independently calculates $F_{0^k}(x) = x'$, and outputs 1 if the first k bits of y is equal to x', and 0 if it is not.

If $\mathcal{O} = F_S^3$ then \mathcal{D}_3 will output 1 with the probability of 1, but if $\mathcal{O} = f$ where f is chosen uniformly from the set of all functions mapping k-bit strings to 2k-bit strings, then the probability that \mathcal{D}_3 outputs 1 is equal to the probability that the first k bits of f(x) are equal to x' which happens with the probability of 2^{-k} , so

$$\left| Pr[\mathcal{D}_{3}^{F_{\mathcal{S}}^{3}(.)}(1^{n}) = 1] - Pr[\mathcal{D}_{3}^{f(.)}(1^{n}) = 1] \right| = |1 - 2^{-k}|$$

which is not negligible.

4. $F_S^4(x) = F_{S_1}(x) ||F_{S_2}(x)$, where $S_1 = F_S(0^k)$ and $S_2 = F_S(1^k)$

Solution:

Let us define R_1 , R_2 and $R = (R_1 || R_2)$ random functions such that $R_1 : \{0, 1\}^k \to \{0, 1\}^k$, $R_2 : \{0, 1\}^k \to \{0, 1\}^k$ and $R_3 : \{0, 1\}^k \to \{0, 1\}^{2k}$. We also define the functions g_1 , g_2 and $g = (g_1 || g_2)$ such that $g_1 = F_{S_3}$, $g_2 = F_{S_4}$ and $g = (F_{S_3} || F_{S_4})$

where S_3 and S_4 are chosen randomly from $\{0,1\}^k$.

We claim that F_S^4 is a pseudorandom function. Suppose that it is not. Hence there is a distinguisher \mathcal{A} such that

$$\left| \Pr[\mathcal{A}^{F_{\mathcal{S}}^{4}(.)}(1^{n}) = 1] - \Pr[\mathcal{A}^{f(.)}(1^{n}) = 1] \right| > \operatorname{negl}(n)$$

where f is chosen uniformly from the set of all functions mapping k-bit strings to 2k-bit strings.

Now we use \mathcal{A} to build a distinguisher \mathcal{B} for F_S . \mathcal{B} works such that given the oracle \mathcal{O} , it choses the random $i \in \{1, 2, 3\}$ and outputs $\mathcal{A}^{f_i(.)}(1^n)$ such that $f_1 = F_{\mathcal{O}(0^k)} ||F_{\mathcal{O}(1^k)}|, f_2 = g_1||\mathcal{O} \text{ and } f_3 = \mathcal{O}||R_2$. If $\mathcal{O} = F_S$ we will have

$$f_1 = (F_{F_S(0^k)} || F_{F_S(1^k)}) = (F_{S_1} || F_{S_2}) = F_S^4$$
$$f_2 = (g_1 || F_S) \approx (F_{S_3} || F_{S_4}) \approx (g_1 || g_2) \approx g$$

because S like S_4 is chosen randomly from $\{0,1\}^k$ and

$$f_3 = (F_S || R_2) \approx (F_{S_3} || R_2) \approx (g_1 || R_2)$$

because S like S_3 is chosen randomly from $\{0, 1\}^k$. But if \mathcal{O} is a random function we will have

$$f_1 \approx (F_{S_5} || F_{S_6})$$

where S_5 and S_6 (like S_3 and S_4) are randomly chosen from $\{0,1\}^k$. So

$$f_1 \approx (F_{S_3} || F_{S_4}) \approx (g_1 || g_2) \approx g$$
$$f_2 = (g_1 || \mathcal{O}) \approx (g_1 || R_2)$$
$$f_3 = (\mathcal{O} || R_2) \approx (R_1 || R_2) \approx R$$

Now we write the advantage of \mathcal{B} as

$$\begin{aligned} \frac{1}{3} \left| \Pr[\mathcal{A}^{F_{S}^{4}(.)}(1^{n}) = 1] - \Pr[\mathcal{A}^{g(.)}(1^{n}) = 1] + \Pr[\mathcal{A}^{g(.)}(1^{n}) = 1] - \Pr[\mathcal{A}^{(g_{1}||R_{2})(.)}(1^{n}) = 1] + \\ \Pr[\mathcal{A}^{(g_{1}||R_{2})(.)}(1^{n}) = 1] - \Pr[\mathcal{A}^{R(.)}(1^{n}) = 1] \right| &= \frac{1}{3} \left| \Pr[\mathcal{A}^{F_{S}^{4}(.)}(1^{n}) = 1] - \Pr[\mathcal{A}^{R(.)}(1^{n}) = 1] \right| \\ &= \frac{1}{3} \left| \Pr[\mathcal{A}^{F_{S}^{4}(.)}(1^{n}) = 1] - \Pr[\mathcal{A}^{f(.)}(1^{n}) = 1] \right| > \frac{1}{3} \operatorname{negl}(n) \end{aligned}$$

which means \mathcal{B} has non negligible advantage which is not possible since \mathcal{B} is a distinguisher for F_S which was considered to be pseudorandom.

Problem 3

What is the output of an r-round Feistel network when the input is (L_0, R_0) in each of the following two cases:

1. (10 Points) Each round function outputs all 0's, regardless of the input.

Solution:

The structure of a Feistel network is as follows

$$L_{i+1} = R_i$$

$$R_{i+1} = L_i \oplus F(R_i, K_i)$$

So if in each round the function outputs all 0's we will have

$$L_{i+1} = R_i$$
$$R_{i+1} = L_i$$

This shows us that R_0 and L_0 just switch places in each round. So if r is even the output of the Feistel network will be (L_0, R_0) , and (R_0, L_0) if r is odd.

2. (10 Points) Each round function is the identity function.

Solution:

If each round's function is the identity function we will have

$$(L_1, R_1) = (R_0, L_0 \oplus F(R_0, K_0)) = (R_0, L_0 \oplus R_0)$$
$$(L_2, R_2) = (L_0 \oplus R_0, R_0 \oplus F(L_0 \oplus R_0, K_1)) = (L_0 \oplus R_0, R_0 \oplus L_0 \oplus R_0) = (L_0 \oplus R_0, L_0)$$
$$(L_3, R_3) = (L_0, L_0 \oplus R_0 \oplus F(L_0, K_2)) = (L_0, L_0 \oplus R_0 \oplus L_0) = (L_0, R_0)$$

So the output repeats itself after 3 rounds which gives us the output (L_0, R_0) if $r \mod 3 = 0$, $(R_0, L_0 \oplus R_0)$ if $r \mod 3 = 1$ and $(L_0 \oplus R_0, L_0)$ if $r \mod 3 = 2$.