

مقدمهاى بر رمزنگارى
پاسخ نامه سرى
نگارنله : آرش عاشورى

Problem 1

a) For the first implication, assume that E is perfectly Shannon secure. Consider any fixed $m \in M$ and $c \in C$.
$\operatorname{Pr}[\mathbf{c}=c \wedge \mathbf{m}=m]=\operatorname{Pr}[E(\mathbf{k}, \mathbf{m})=c \wedge \mathbf{m}=m]=\operatorname{Pr}[E(\mathbf{k}, m)=c \wedge \mathbf{m}=m]$
$=\operatorname{Pr}[E(\mathbf{k}, m)=c] \operatorname{Pr}[\mathbf{m}=m]$
(by independence of k and m)

$$
\begin{array}{rlr}
\operatorname{Pr}[\mathbf{c}=c] & =\operatorname{Pr}[E(\mathbf{k}, \mathbf{m})=c] \\
& =\sum_{m^{\prime} \in M} \operatorname{Pr}\left[E(\mathbf{k}, \mathbf{m})=c \wedge \mathbf{m}=m^{\prime}\right] \\
& =\sum_{m^{\prime} \in M} \operatorname{Pr}\left[E\left(\mathbf{k}, m^{\prime}\right)=c \wedge \mathbf{m}=m^{\prime}\right] \\
& =\sum_{m^{\prime} \in M} \operatorname{Pr}\left[E\left(\mathbf{k}, m^{\prime}\right)=c\right] \operatorname{Pr}\left[\mathbf{m}=m^{\prime}\right] & \text { (by total probability) } \\
& =\sum_{m^{\prime} \in M} \operatorname{Pr}[E(\mathbf{k}, m)=c] \operatorname{Pr}\left[\mathbf{m}=m^{\prime}\right] & \text { (by independence of k and m) } \\
& =\operatorname{Pr}[E(\mathbf{k}, m)=c] \sum_{m^{\prime} \in M} \operatorname{Pr}\left[\mathbf{m}=m^{\prime}\right]=\operatorname{Pr}[E(\mathbf{k}, m)=c]
\end{array}
$$

Hence we have:
$\operatorname{Pr}[\mathbf{c}=c \wedge \mathbf{m}=m]=\operatorname{Pr}[\mathbf{c}=c] \operatorname{Pr}[\mathbf{m}=m]$
If we have an extra assumption that for every $c \in C$ we have $\operatorname{Pr}(c)>0$ then :
$\operatorname{Pr}[\mathbf{c}=c \wedge \mathbf{m}=m]=\operatorname{Pr}[\mathbf{c}=c] \operatorname{Pr}[\mathbf{m}=m \mid \mathbf{c}=c] \rightarrow \operatorname{Pr}[\mathbf{m}=m \mid \mathbf{c}=c]=\operatorname{Pr}[\mathbf{m}=m]$
Hence Shannon security with this extra assumption imply Perfect security. without this extra assumption Shannon security does not necessarily imply perfect security. For example let the encryption of some $m_{0} \in M$ to some c_{0} be possible but the probability of this encryption be 0 . and assume that the encryption of other members of M to c_{0} is not possible. then Shannon security is possible because for any $m \in M$ we have $\operatorname{Pr}\left(E n c(m, \mathbf{k})=c_{0}\right)=0$. but it can not have perfect security because $\operatorname{Pr}\left(m_{0} \mid c_{0}\right)=1 \neq$ $\operatorname{Pr}\left(m_{0}\right)$.

For the converse assume E is perfectly secure. we have
$\operatorname{Pr}[E n c(\mathbf{k}, m)=c] \operatorname{Pr}[\mathbf{m}=m]$
$=\operatorname{Pr}[\operatorname{Enc}(\mathbf{k}, m)=c \wedge \mathbf{m}=m] \quad$ (by independence of k and m$)$
$=\operatorname{Pr}[\operatorname{Enc}(\mathbf{k}, \mathbf{m})=c \wedge \mathbf{m}=m]$
$=\operatorname{Pr}[\mathbf{c}=c \wedge \mathbf{m}=m]=\operatorname{Pr}[\mathbf{m}=m \mid \mathbf{c}=c] \operatorname{Pr}[\mathbf{c}=c]=\operatorname{Pr}[\mathbf{m}=m] \operatorname{Pr}[\mathbf{c}=c]$
If we have an extra assumption that for every $m \in M$ we have $\operatorname{Pr}(m)>0$ then :
$\operatorname{Pr}[\mathbf{c}=c]=\operatorname{Pr}[E n c(\mathbf{k}, m)=c]$
Hence Perfect security with this extra assumption imply Shannon security. Similar argument as before shows that without this assumption Perfect security doesnt necesserily imply Shannon security.
b) Let message be $m \in\{0,1\}^{n}$ then generate some $k_{1}, k_{2}, k_{3} \in\{0,1\}^{n}$ by a uniform distribution on it. Share $m \oplus k_{1} \oplus k_{2} \oplus k_{3}$ with every one and share (k_{1}, k_{2}) with first one, $\left(k_{2}, k_{3}\right)$ with second one and $\left(k_{1}, k_{3}\right)$ with third one.

Problem 2

a) For $|K| \geq|M|$ there exists a system which advantage to any adversary is zero. So let $|K| \leq|M|$ and let the cipher space C be equal to message space M and E be a deterministic encryption system which its key generation chooses uniformly from K. let C_{i} be the members of C which m_{i} is encrypted to them for some $k \in K$. this system exists for example let $\operatorname{Enc}(k, m)=m+k$ and $\operatorname{Dec}(k, c)=c-k$. System is deteministic and decryptions works with probability 1 , hence we have $\left|C_{i}\right|=|K|$.
Let A be an arbitrary adversary. assume it outputs $m_{0}, m_{1} \in M$. suppose $\left|C_{0} \cap C_{1}\right|=n$, Then we have $\left|C_{1} \backslash C_{0}\right|=\left|C_{0} \backslash C_{1}\right|=|K|-n$.
The adversary uses an algorithm, hence for every cipher c it gets as cipher thers exists a real number p (obviously dependeing to c) such that A chooses m_{0} with probability p. Suppose A chooses m_{0} with probability p_{i} if $c=a_{i} \in C_{0} \backslash C_{1}$ and with probability q_{i} if $c=b_{i} \in C_{0} \cap C_{1}$ and with probability s_{i} if $c=c_{i} \in C_{1} \backslash C_{0}$.
Now we calculate the advantage of A. key is chosen uniformly in K, hence the encryption of m_{i} is uniformly in C_{i}.

$$
\begin{aligned}
& \text { advantage }=\left|\operatorname{Pr}\left(m_{0} \mid m_{0}\right)-\operatorname{Pr}\left(m_{0} \mid m_{1}\right)\right| \\
& =\mid \sum_{i=1}^{|K|-n} \operatorname{Pr}\left(c=a_{i} \wedge \text { choose }\left(m_{0}\right) \mid m_{0}\right)+\sum_{i=1}^{n} \operatorname{Pr}\left(c=b_{i} \wedge \text { choose }\left(m_{0}\right) \mid m_{0}\right) \\
& -\sum_{i=1}^{n} \operatorname{Pr}\left(c=b_{i} \wedge \text { choose }\left(m_{0}\right) \mid m_{1}\right)-\sum_{i=1}^{|K|-n} \operatorname{Pr}\left(c=a_{i} \wedge \text { choose }\left(m_{0}\right) \mid m_{1}\right) \mid
\end{aligned}
$$

$=\frac{1}{|K|}\left|\sum_{i=1}^{|K|-n} p_{i}+\sum_{i=1}^{n} q_{i}-\sum_{i=1}^{n} q_{i}-\sum_{i=1}^{|K|-n} c_{i}\right|=\frac{1}{k}\left|\sum_{i=1}^{|K|-n} p_{i}-c_{i}\right|$
Hence the best adversary should choose for every i : $p_{i}=1, c_{i}=0$ and q_{i} doesnt really matter. Hence:
advantage $=\frac{|K|-n}{|K|}$
$n=\left|C_{0} \cap C_{1}\right|=|K|-\left|C_{1} \backslash C_{0}\right| \geq|K|-(|M|-|K|)=2|K|-|M|$
\rightarrow advantage $\leq \frac{|M|-|K|}{|K|}=\frac{|M|}{|K|}-1$
b) The Encryption system has the properties that we mentioned in the previous part hence:
advantage $\leq \frac{|M|}{|K|}-1=\frac{1}{1-\epsilon}-1=\frac{\epsilon}{1-\epsilon}$
For the second part let the key space be the set of n bits which the j first bits are not simultaneusly zero. we have $|K|=2^{n}-2^{n-j}=2^{n}\left(1-2^{-j}\right)=(1-\epsilon) 2^{n}$.
suppose an adversary outputs $m_{0}=000 . .0, m_{1}=111 \ldots 1$ then C_{0} is all of n bits which first j bits are not simultaneusly zero and C_{1} is all of the n bits which first j bits are not simultaneusly one, hence:
$n=\left|C_{0} \cap C_{1}\right|=2^{n}-2 \times 2^{n-j} \rightarrow$ advantage $=\frac{|K|-n}{|K|}=\frac{2^{n-j}}{2^{n}\left(1-2^{-j}\right)}=\frac{\epsilon}{1-\epsilon}$

Problem 3

Suppose a system has ϵ-security.
$\frac{\operatorname{Pr}\left(m_{i}\right)-\operatorname{Pr}\left(m_{i} \mid c_{j}\right)}{\operatorname{Pr}\left(m_{i}\right)}=-\beta_{i j} \rightarrow \operatorname{Pr}\left(m_{i} \mid c_{j}\right)=\operatorname{Pr}\left(m_{i}\right)\left(1+\beta_{i j}\right) ;\left|\beta_{i j}\right| \leq \epsilon<1$
Let $m_{i} \in M$ with $\operatorname{Pr}\left(m_{i}\right)>0$ and $c_{0} \in C$ with $\operatorname{Pr}\left(c_{0}\right)>0$ then we have
$\operatorname{Pr}\left(c_{0} \mid m_{i}\right)=\frac{\operatorname{Pr}\left(m_{i} \mid c_{0}\right) \operatorname{Pr}\left(c_{0}\right)}{\operatorname{Pr}\left(m_{i}\right)}=\operatorname{Pr}\left(c_{0}\right)\left(1+\beta_{i}\right)>\operatorname{Pr}\left(c_{0}\right)(1-\epsilon) \rightarrow \sum_{i} \operatorname{Pr}\left(c_{0} \mid m_{i}\right)=\infty$
Let X_{i} be the subset of key space which may encrypt m_{i} to c_{0} then we have $\operatorname{Pr}\left(X_{i}\right) \geq$ $\operatorname{Pr}\left(c_{0} \mid m_{i}\right)$. decryption should be done with probability 1 hence X_{i}^{\prime} s are disjoint hence $\sum_{i} \operatorname{Pr}\left(X_{i}\right) \leq 1$ but we have $1=\sum_{i} \operatorname{Pr}\left(X_{i}\right) \geq \sum_{i} \operatorname{Pr}\left(c_{0} \mid m_{i}\right)=\infty$ which is a contradiction. hence there is no system wich has ϵ-security.

