

## Problem 1

a) For the first implication, assume that E is perfectly Shannon secure. Consider any fixed  $m \in M$  and  $c \in C$ .

$$\Pr[\mathbf{c} = c \land \mathbf{m} = m] = \Pr[E(\mathbf{k}, \mathbf{m}) = c \land \mathbf{m} = m] = \Pr[E(\mathbf{k}, m) = c \land \mathbf{m} = m]$$
$$= \Pr[E(\mathbf{k}, m) = c] \Pr[\mathbf{m} = m]$$
(by independence of k and m)

$$\begin{aligned} \Pr[\mathbf{c} = c] &= \Pr[E(\mathbf{k}, \mathbf{m}) = c] \\ &= \sum_{m' \in M} \Pr[E(\mathbf{k}, \mathbf{m}) = c \land \mathbf{m} = m'] \\ &= \sum_{m' \in M} \Pr[E(\mathbf{k}, m') = c \land \mathbf{m} = m'] \\ &= \sum_{m' \in M} \Pr[E(\mathbf{k}, m') = c] \Pr[\mathbf{m} = m'] \\ &= \sum_{m' \in M} \Pr[E(\mathbf{k}, m) = c] \Pr[\mathbf{m} = m'] \end{aligned}$$
(by independence of k and m)  
$$&= \sum_{m' \in M} \Pr[E(\mathbf{k}, m) = c] \Pr[\mathbf{m} = m'] \end{aligned}$$
(by definition of Shannon security)  
$$&= \Pr[E(\mathbf{k}, m) = c] \sum_{m' \in M} \Pr[\mathbf{m} = m'] = \Pr[E(\mathbf{k}, m) = c] \end{aligned}$$

Hence we have:

 $\Pr[\mathbf{c} = c \land \mathbf{m} = m] = \Pr[\mathbf{c} = c] \Pr[\mathbf{m} = m]$ 

If we have an extra assumption that for every  $c \in C$  we have  $\Pr(c) > 0$  then :  $\Pr[\mathbf{c} = c \land \mathbf{m} = m] = \Pr[\mathbf{c} = c] \Pr[\mathbf{m} = m | \mathbf{c} = c] \rightarrow \Pr[\mathbf{m} = m | \mathbf{c} = c] = \Pr[\mathbf{m} = m]$ Hence Shannon security with this extra assumption imply Perfect security. without this extra assumption Shannon security does not necessarily imply perfect security. For example let the encryption of some  $m_0 \in M$  to some  $c_0$  be possible but the probability of this encryption be 0. and assume that the encryption of other members of M to  $c_0$ is not possible. then Shannon security is possible because for any  $m \in M$  we have  $\Pr(Enc(m, \mathbf{k}) = c_0) = 0$ . but it can not have perfect security because  $\Pr(m_0|c_0) = 1 \neq \Pr(m_0)$ . For the converse assume E is perfectly secure. we have

$$Pr[Enc(\mathbf{k}, m) = c]Pr[\mathbf{m} = m]$$

$$= Pr[Enc(\mathbf{k}, m) = c \land \mathbf{m} = m]$$

$$= Pr[Enc(\mathbf{k}, \mathbf{m}) = c \land \mathbf{m} = m]$$

$$= Pr[Enc(\mathbf{k}, \mathbf{m}) = c \land \mathbf{m} = m]$$

$$= Pr[\mathbf{c} = c \land \mathbf{m} = m] = Pr[\mathbf{m} = m | \mathbf{c} = c] Pr[\mathbf{c} = c] = Pr[\mathbf{m} = m] Pr[\mathbf{c} = c]$$

If we have an extra assumption that for every  $m \in M$  we have Pr(m) > 0 then :  $Pr[\mathbf{c} = c] = Pr[Enc(\mathbf{k}, m) = c]$ 

Hence Perfect security with this extra assumption imply Shannon security. Similar argument as before shows that without this assumption Perfect security doesn't necessarily imply Shannon security.

b) Let message be  $m \in \{0,1\}^n$  then generate some  $k_1, k_2, k_3 \in \{0,1\}^n$  by a uniform distribution on it. Share  $m \oplus k_1 \oplus k_2 \oplus k_3$  with every one and share  $(k_1, k_2)$  with first one,  $(k_2, k_3)$  with second one and  $(k_1, k_3)$  with third one.

## Problem 2

a) For  $|K| \ge |M|$  there exists a system which advantage to any adversary is zero. So let  $|K| \le |M|$  and let the cipher space C be equal to message space M and E be a deterministic encryption system which its key generation chooses uniformly from K. let  $C_i$  be the members of C which  $m_i$  is encrypted to them for some  $k \in K$ . this system exists for example let Enc(k,m) = m + k and Dec(k,c) = c - k. System is deterministic and decryptions works with probability 1, hence we have  $|C_i| = |K|$ .

Let A be an arbitrary adversary. assume it outputs  $m_0, m_1 \in M$ . suppose  $|C_0 \cap C_1| = n$ , Then we have  $|C_1 \setminus C_0| = |C_0 \setminus C_1| = |K| - n$ .

The adversary uses an algorithm, hence for every cipher c it gets as cipher there exists a real number p(obviously dependeing to c) such that A chooses  $m_0$  with probability p. Suppose A chooses  $m_0$  with probability  $p_i$  if  $c = a_i \in C_0 \setminus C_1$  and with probability  $q_i$ if  $c = b_i \in C_0 \cap C_1$  and with probability  $s_i$  if  $c = c_i \in C_1 \setminus C_0$ .

Now we calculate the advantage of A. key is chosen uniformly in K, hence the encryption of  $m_i$  is uniformly in  $C_i$ .

$$advantage = |\Pr(m_0|m_0) - \Pr(m_0|m_1)|$$

$$= |\sum_{i=1}^{|K|-n} \Pr(c = a_i \wedge choose(m_0)|m_0) + \sum_{i=1}^n \Pr(c = b_i \wedge choose(m_0)|m_0) - \sum_{i=1}^n \Pr(c = b_i \wedge choose(m_0)|m_1) - \sum_{i=1}^{|K|-n} \Pr(c = a_i \wedge choose(m_0)|m_1)|$$

$$= \frac{1}{|K|} \left| \sum_{i=1}^{|K|-n} p_i + \sum_{i=1}^n q_i - \sum_{i=1}^n q_i - \sum_{i=1}^{|K|-n} c_i \right| = \frac{1}{k} \left| \sum_{i=1}^{|K|-n} p_i - c_i \right|$$

Hence the best adversary should choose for every *i*:  $p_i = 1, c_i = 0$  and  $q_i$  doesn't really matter. Hence:

$$\begin{aligned} advantage &= \frac{|K|-n}{|K|} \\ n &= |C_0 \cap C_1| = |K| - |C_1 \setminus C_0| \ge |K| - (|M| - |K|) = 2|K| - |M| \\ &\to advantage \le \frac{|M| - |K|}{|K|} = \frac{|M|}{|K|} - 1 \end{aligned}$$

b) The Encryption system has the properties that we mentioned in the previous part hence:

 $advantage \leq \frac{|M|}{|K|} - 1 = \frac{1}{1-\epsilon} - 1 = \frac{\epsilon}{1-\epsilon}$ 

For the second part let the key space be the set of n bits which the j first bits are not simultaneously zero. we have  $|K| = 2^n - 2^{n-j} = 2^n(1 - 2^{-j}) = (1 - \epsilon)2^n$ .

suppose an adversary outputs  $m_0 = 000..0, m_1 = 111...1$  then  $C_0$  is all of n bits which first j bits are not simultaneously zero and  $C_1$  is all of the n bits which first j bits are not simultaneously one, hence:

 $n = |C_0 \cap C_1| = 2^n - 2 \times 2^{n-j} \rightarrow advantage = \frac{|K| - n}{|K|} = \frac{2^{n-j}}{2^n(1 - 2^{-j})} = \frac{\epsilon}{1 - \epsilon}$ 

## Problem 3

Suppose a system has  $\epsilon$ -security.

$$\frac{\Pr(m_i) - \Pr(m_i | c_j)}{\Pr(m_i)} = -\beta_{ij} \rightarrow \Pr(m_i | c_j) = \Pr(m_i)(1 + \beta_{ij}); |\beta_{ij}| \le \epsilon < 1$$

Let  $m_i \in M$  with  $Pr(m_i) > 0$  and  $c_0 \in C$  with  $Pr(c_0) > 0$  then we have

$$\Pr(c_0|m_i) = \frac{\Pr(m_i|c_0)\Pr(c_0)}{\Pr(m_i)} = \Pr(c_0)(1+\beta_i) > \Pr(c_0)(1-\epsilon) \to \sum_i \Pr(c_0|m_i) = \infty$$

Let  $X_i$  be the subset of key space which may encrypt  $m_i$  to  $c_0$  then we have  $\Pr(X_i) \ge \Pr(c_0|m_i)$ . decryption should be done with probability 1 hence  $X_i^{,}$  s are disjoint hence  $\sum_i \Pr(X_i) \le 1$  but we have  $1 = \sum_i \Pr(X_i) \ge \sum_i \Pr(c_0|m_i) = \infty$  which is a contradiction. hence there is no system wich has  $\epsilon$ -security.