

Problem 1

Let F be a secure PRF. Define $\Pi = (\text{Gen}, \text{MAC}, \text{Verify})$ that works on fixed-size messages of the form $m = m_1 m_2 \dots m_l$ for $m_i \in \{0, 1\}^n$, where

$$\mathsf{MAC}_k(m) \coloneqq F_k(m_1) \oplus \ldots \oplus F_k(m_l)$$

and verification is canonical. Show that Π is insecure.

Problem 2

Say a public-key encryption scheme $\Pi = (Gen, Enc, Dec)$ is a *homomorphic* encryption scheme if

- its message space forms a group \mathbb{G} with operation \odot ;
- there is a PPT algorithm Hom such that for $(pk, sk) \leftarrow \text{Gen}(1^n)$, any $m_1, m_2 \in \mathbb{G}$, $c_1 \leftarrow \text{Enc}_{pk}(m_1)$, $c_2 \leftarrow \text{Enc}_{pk}(m_2)$, and $c \leftarrow \text{Hom}(pk, c_1, c_2)$, we have $\text{Dec}_{sk}(c) = m_1 \odot m_2$.
- 1. Show that the ElGamal encryption is homomorphic.
- 2. Show that homomorphic public-key encryption scheme cannot achieve CCA security.

Problem 3

Say a public-key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ for *n*-bit messages is one-way if the probability $\Pr[\text{PubK}_{\mathcal{A},\Pi}^{\text{ow}}(n) = 1]$ is negligible for any PPT adversary \mathcal{A} . The experiment $\text{PubK}_{\mathcal{A},\Pi}^{\text{ow}}(n)$ is shown as follows.

• $Gen(1^n)$ is run to obtain (pk, sk).

- A message *m* is chosen uniformly from $\{0,1\}^n$ and a ciphertext $c \leftarrow \mathsf{Enc}_{pk}(m)$ is generated.
- \mathcal{A} is given (pk, c) and outputs m'.
- $\mathsf{PubK}^{\mathsf{ow}}_{\mathcal{A},\Pi}(n) = 1 \text{ if } m' = m.$
- 1. Show that if a public-key encryption scheme Π for *n*-bit messages has CPA security, then Π is one-way.
- 2. Show that CPA security is strictly stronger than one-way security. **Hint:** Give a public-key encryption scheme example which has one-way security but does not have CPA security.
- 3. Construct a CPA secure KEM using one-way secure public-key encryption scheme in the random oracle model. Show your construction and proof ideas.