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Problem 1

In all of the CPA-sec ure encryption schemes, the length of the ciphertext is greater than
the length of the plaintext length. In this problem, we will show that this is necessary.
Let (Encrypt, Decrypt) be a symmetric encryption scheme with message space {0,1}"
and ciphertext space {0,1}™.

1. Suppose that n = m. Show that (Encrypt, Decrypt) cannot be CPA-secure.

2. Suppose that m = n + £ for some ¢ < 5. Describe a CPA adversary that makes
O(2%?) queries in the CPA-security game and distinguishes with constant proba-
bility. For simplicity (though not necessary), you may assume that for any choice
of key k and message m, the output distribution of Encrypt(k, m) is uniform over
a collection of up to 2¢ possible ciphertexts, where the distribution is over the
encryption randomness. Be sure to fully describe your attack and give a precise
analysis of the advantage (note that it suffices to lower bound the advantage by
a constant).

Problem 2

Let F : {0,1}* x {0,1}* — {0,1} be a secure PRF. Use F to construct a function
F' {0,131 x {0,1}* — {0, 1} with the following two properties:

e F"is a secure PRF.

o If the adversary learns the last bit of the key, then F’ is no longer secure. You
should (a) prove that F” is a secure PRF; and (b) describe an attack (and compute
the advantage) when the adversary knows the last bit of the PRF key. This
problem shows that leaking even a single bit of the secret key can break PRF
security. Hint: Try changing the value of F' at a single point.
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Problem 3

Recall that in a Feistel system, we divide the state into left and right halves L;, R; and
then define the new state by L;y1 = R; and R, = L; & f(K;, R;), where K; is the key
for the i-th round and f is a function of the key and half of the state. Prove that no
matter what the function f is, the round transformation is 1-to-1, i.e., we can recover
the old state from the new state and the key.

Problem 4

Let G be a PRG with expansion factor {(n) > nand let f : {0,1}* — {0, 1}* be a length-
preserving bijection (i.e., a permutation) such that f is computable in deterministic
polynomial time and define G’ as follows:

Show that G’ is also a PRG.

Problem 5

Consider the following message authentication code called BCMAC (for block cipher
message authentication code”) which is derived from a block cipher that operates on
n-bit plaintexts. BCMAC takes as input a message M of bit length 2n—2 and produces
the corresponding tag as follows (here, Fk is encryption under the block cipher using
key K and || denotes concatenation):

1. Write M = My||M,, where My, M, each have length n — 1.
2. BOMAC(M) = Exc(0]|Mo) || Exc(1]]M,)

Show that BCMAC is not computation resistant as follows.

Suppose an adversary Eve has two distinct messages M = My||M; and M’ = M[|| M7,
with My # M and M; # M, along with their respective message authentication tags
BCMAC(M) and BCMAC(M'). Carefully show how Eve can use this information to
defeat computation resistance.

Hint: Computation resistant means Given zero or more message/MAC pairs, it is
computationally infeasible to generate a new message/MAC pair where the message is
distinct from all the given messages.
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