

تحويل اصلى: YY دى 1r99
مقدمهاى بر رمزنغارى
تمرين شماره Y

تحويل نهايى: Y9 دى 1r99
مدرّس: دكتر شهرام خزائى

- Upload your answers on courseware with the name: StudentNumber.pdf
- Upload a PDF file. Image and zip formats are not accepted.
- Similar answers will not be graded.
- NO answers will be accepted via e-mail.
- You can't upload files bigger than 2 Mb , so you'd better type.
- Deadline time is always at 23:55 and will not be extended.
- You should submit your answers before soft deadline.
- You will lose 5 percent for each day delay if you submit within a week after soft deadline.
- You can not submit any time after hard deadline.
- This problem set includes 120 points.
- For any question contact Aysan Nishaburi via aysannishaburi@gmail.com.

Problem 1

(20 Points) Let $\Pi_{1}=\left(\mathrm{Gen}_{1}, \mathrm{Enc}_{1}, \mathrm{Dec}_{1}\right)$ be a PKE scheme. Build a private-key encryption scheme $\Pi_{2}=\left(\mathrm{Gen}_{2}, \mathrm{Enc}_{2}, \mathrm{Dec}_{2}\right)$ such that:
(i) $\operatorname{Gen}_{2}:=\operatorname{Gen}_{1}$, that is, the single private key k of Π_{2} is the pair $(s k, p k)$ output by Gen_{1}.
(ii) $\operatorname{Enc}_{2,(p k, s k)}(m):=\left(\operatorname{Enc}_{1, p k}(m), \operatorname{Enc}_{1, p k}(m)\right)$, that is, encryption of a message m produces a ciphertext $\left(c_{0}, c_{1}\right)$, where for c_{0} and c_{1}, encryption is performed independently as in Π_{1}.
(iii) $\operatorname{Dec}_{2,(p k, s k)}\left(c_{0}, c_{1}\right)$ is defined as follows: Let $m_{0}:=\operatorname{Dec}_{1, s k}\left(c_{0}\right), m_{1}:=\operatorname{Dec}_{1, s k}\left(c_{1}\right)$. Then, $\operatorname{Dec}_{2,(p k, s k)}\left(c_{0}, c_{1}\right)$ is defined as \perp if $m_{0} \neq m_{1}$, and as m_{0} otherwise.

Prove or disprove that Π_{2} is CCA-secure.

Problem 2

Let $E(k, m)$ be a block cipher where the message space is the same as the key space (e.g. 128-bit AES). Show an efficient algorithm for constructing collisions for f_{1} and f_{2} :
(1) (10 Points) $f_{1}(x, y)=E(y, x) \oplus y$
(2) (10 Points) $f_{2}(x, y)=E(x, x \oplus y)$

Recall that the block cipher E and the corresponding decryption algorithm D are both known to you.

Problem 3

(20 Points) Let \mathbb{G} be a cyclic finite group of order $2 p$ where p is a prime. Show that the decisional Diffie Hellman problem does not hold in \mathbb{G}.

Problem 4

(a) (10 points) Three-party Diffie-Hellman key exchange: Suppose Alice, Bob, and Carole can authentically communicate through a public channel. Devise a protocol that enables them to establish a common secret key securely.
(b) (10 points) Generalise your solution with n parties by devising a protocol that works on $n-1$ messaging rounds (in each round, each participant broadcasts a message that s / he computes using the messages received during the previous rounds and every parties receives $n-1$ message from other parties).
(c) (10 points) Using a SKE scheme, devise a protocol with n participants with two rounds.
$(\mathrm{d})^{*}$ (10 points) There exists a protocol for three-party Diffie-Hellman key exchange with one messaging round. It was first described by Antoine Joux in 2000 and it uses a bilinear map. Provide a definition of a bilinear map and show how it can be used for such a protocol. What is the underlying hardness assumption for the security of the protocol?

Problem 5

(20 Points) Let $\Pi=$ (Gen, Enc, Dec) be a public key encryption scheme. An attractive way to perform a bidding is the following: the seller publishes a public key e. Each buyer sends through the net the encryption $\operatorname{Enc}_{e}(x)$ of its bid x, and then the seller will decrypt all of these and award the product to the highest bidder.
One aspect of security we need from $\operatorname{Enc}()$ is that given an encryption $\operatorname{Enc}_{e}(x)$, it will be hard for someone not knowing x to come up with $\operatorname{Enc}_{e}(x+1)$ (otherwise bidder B could always take the bid of bidder A and make into a bid that is one dollar higher). Show that if Π is CCA secure then there is no such algorithm, in the following sense: if M is any polynomial time algorithm, then

$$
\underset{\substack{(e, d) \leftarrow G \operatorname{Gen}\left(1^{n}\right) \\ X \leftarrow \mathbb{R}^{\left\{0,10^{6}\right\}}}}{\operatorname{Pr}}\left[\operatorname{Dec}_{d}\left(M\left(e, \operatorname{Enc}_{e}(x)\right)\right)=x+1\right]<10^{-6}+n^{-\omega(1)}
$$

