$$
\begin{aligned}
& \text { تحويل اصلى: ّ آبان } 1 \text { 199 } \\
& \text { مقدمهاى بر رمزنغارى } \\
& \text { تمرين شماره } \\
& \text { تحويل نهايی: • ا آبان } 1 \text { 199 } \\
& \text { مدرّس: دكتر شهرام خزائى }
\end{aligned}
$$

- Upload your answers on courseware with the name: StudentNumber.pdf
- Upload a PDF file. Image and zip formats are not accepted.
- Similar answers will not be graded.
- NO answers will be accepted via e-mail.
- You can't upload files bigger than 2 Mb , so you'd better type.
- Deadline time is always at $23: 55$ and will not be extended.
- You should submit your answers before soft deadline.
- You will lose 5 percent for each day delay if you submit within a week after soft deadline.
- You can not submit any time after hard deadline.
- This problem sets include 80 points.
- For any question contact Ghazal Khalighinejad via ghazalkhn99@gmail.com.

Problem 1

(20 Points) Let $G_{1}, G_{2}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$ be two PRGs. Which of the following is a PRG (there is more than one correct answer):
Provide a proof or counter-example for your answers.

1. $G\left(k_{1}| | k_{2}\right)=G_{1}\left(k_{1}\right) \oplus G_{2}\left(k_{2}\right)$ with $\left|k_{1}\right|=\left|k_{2}\right|$
2. $G(k)=G_{1}\left(0^{|k|}\right)| | G_{2}(k)$
3. $G(k)=G_{1}(k) \oplus G_{2}(k)$
4. $G(k)=G_{1}\left(G_{2}(k)\right)$

Problem 2

(20 points) Suppose the message space of a symmetric key encryption system is infinite. (For example the set of natural numbers)
Prove or disprove that such a scheme can be perfectly secret.

Problem 3

(20 Points) We saw that any perfectly (and even imperfectly) secure private key encryption scheme needs to use a key as large as the message. But we actually made an implicit subtle assumption: that the encryption process is deterministic. In a probabilistic encryption scheme, the encryption function E may be probabilistic: that is, given a message x and a key k, the value $\mathrm{E}_{k}(x)$ is not fixed but is distributed according to some distribution $Y_{x, k}$. Of course, because the decryption function is only given the key k and not the internal randomness used by E , we need to require that $\mathrm{D}_{k}(y)=x$ for every y in the support of $Y_{k, x}$ (i.e., $\mathrm{D}_{k}(y)=x$ for every y such that $\operatorname{Pr}\left[\mathrm{E}_{k}(x)=y\right]>0$). Prove that even a probabilistic encryption scheme cannot have key which is significantly shorter than the message. That is, show that for every probabilistic encryption scheme (D, E) using n-length keys and ($n+10$)-length messages, there exist two messages $x, x^{\prime} \in\{0,1\}^{n+10}$ such that the distributions $\mathrm{E}_{U_{n}}(x)$ and $\mathrm{E}_{U_{n}}\left(x^{\prime}\right)$ are of statistical distance at least $1 / 10$.
${ }^{1}$ Hint: Define \mathcal{D} to be the following distribution over $\{0,1\}^{\overline{n+10}}$: choose y at random from $\mathrm{E}_{U_{n}}\left(0^{n+5}\right)$, choose k at random in $\{0,1\}^{n}$, and let $x=\mathrm{D}_{k}(y)$. Prove that if (E, D) is $1 / 10$-statistically indistinguishable then for every $x \in\{0,1\}^{n+10}, \operatorname{Pr}[\mathcal{D}=x] \geq 2^{-n-1}$. Derive from this a contradiction.

Problem 4

(20 points) For a given PRG $G: S \rightarrow\{0,1\}^{L}$, and a given adversary \mathcal{A}, consider the following attack game:

- The adversary sends an index i, with $0 \leq i \leq L-1$, to the challenger.
- The challenger chooses a random s from S and computes $r=G(s)$ and sends $r[0], r[1], \ldots, r[i-1]$ to the adversary. $(r[i]$ is the i 'th bit of $r)$
- The adversary outputs $g \in\{0,1\}$.

We say that \mathcal{A} wins if $r[i]=g$, and we define \mathcal{A} 's advantage $a d v_{\mathcal{A}, G}^{P r e}$ to be:

$$
\left.\left\lvert\, \operatorname{Pr}[\mathcal{A} \text { wins }]-\frac{1}{2}\right. \right\rvert\,
$$

We say that G is unpredictable if the value of $a d v_{\mathcal{A}, G}^{P r e}$ is negligible for all p.p.t adversaries \mathcal{A}.

Show that if G is secure, then it is unpredictable

