Game Theory - Week 3

Mojtaba Tefagh
Sharif University of Technology
mtefagh@sharif.edu

November 14, 2022

Overview

■ Strictly Dominated Strategies \& Iterative Removal
■ Dominated Strategies \& Iterative Removal:An Application

- Maxmin Strategies
- Correlated Equilibrium

Rationality

■ A basic premise: players maximize their payoffs

■ What if all players know this?
■ And they know that other players know it?
■ And they know that other players know that they know it?

Strictly Dominated Strategies

■ A strictly dominated strategy can never be a best reply.
■ Let us remove it as it will not be played.
■ All players know this - so let us iterate...
■ Running this process to termination is called the iterated removal of strictly dominated strategies.

Strictly Dominated Strategies (Definitions)

Definition (Strictly Dominated Strategies)

A strategy $s_{i} \in S_{i}$ is strictly dominated by $s_{i}^{\prime} \in S_{i}$ (strategy profile $\left.S=\left(s_{1}, \ldots, s_{n}\right)\right)$ if

$$
u_{i}\left(s_{i}, s_{-i}\right)<u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \quad \forall s_{-i} \in S_{-i}
$$

Iterated Removal of Strictly Dominated Strategies: Example

	L	C	R
U	3,0	2,1	0,0
M	1,1	1,1	5,0
D	0,1	4,2	0,1

Iterated Removal of Strictly Dominated Strategies: Example

	L	C	R
U	3,0	2,1	0,0
M	1,1	1,1	5,0
D	0,1	4,2	0,1

- R is strictly dominated by C

Iterated Removal of Strictly Dominated Strategies - Example (cont'd)

	L	C
U	3,0	2,1
M	1,1	1,1
D	0,1	4,2

Iterated Removal of Strictly Dominated Strategies - Example (cont'd)

	L	C
U	3,0	2,1
M	1,1	1,1
D	0,1	4,2

■ M is strictly dominated by U

Iterated Removal of Strictly Dominated Strategies: Example (cont'd)

	L	C
U	3,0	2,1
D	0,1	4,2

Iterated Removal of Strictly Dominated Strategies: Example (cont'd)

■ L is strictly dominated by C

Iterated Removal of Strictly Dominated Strategies: Example (cont'd)

	C
U	2,1
D	4,2

Iterated Removal of Strictly Dominated Strategies: Example (cont'd)

	C
U	2,1
D	4,2

■ U is strictly dominated by D

Iterated Removal of Strictly Dominated Strategies: Example

	L	C	R
U	3,0	2,1	0,0
M	1,1	1,1	5,0
D	0,1	4,2	0,1

Iterated Removal of Strictly Dominated Strategies: Example

	L	C	R
U	3,0	2,1	0,0
M	1,1	1,1	5,0
D	0,1	4,2	0,1

- A unique Nash equilibrium C, D

Iterated Removal of Strictly Dominated Strategies: Another Example

	L	C	R
U	3,1	0,1	0,0
M	1,1	1,1	5,0
D	0,1	4,1	0,0

Iterated Removal of Strictly Dominated Strategies: Another Example

	L	C	R
U	3,1	0,1	0,0
M	1,1	1,1	5,0
D	0,1	4,1	0,0

- R is dominated by L or C

Iterated Removal of Strictly Dominated Strategies: Another Example (cont'd)

	L	C
U	3,1	0,1
M	1,1	1,1
D	0,1	4,1

Iterated Removal of Strictly Dominated Strategies: Another Example (cont'd)

	L	C
U	3,1	0,1
M	1,1	1,1
D	0,1	4,1

- M is dominated by the mixed strategy that selects U and D with equal probability.

Iterated Removal of Strictly Dominated Strategies: Another Example (cont'd)

	L	C
U	3,1	0,1
M	1,1	1,1
D	0,1	4,1

- M is dominated by the mixed strategy that selects U and D with equal probability.
- Can use mixed strategies to define domination too!

Iterated Removal of Strictly Dominated Strategies: Another Example (cont'd)

	L	C
U	3,1	0,1
D	0,1	4,1

Iterated Removal of Strictly Dominated Strategies: Another Example (cont'd)

	L	C
U	3,1	0,1
D	0,1	4,1

- No other strategies are strictly dominated.
- What are the Nash Equilibria?

Iterated Removal of Strictly Dominated Strategies

- This process preserves Nash equilibria

■ It can be used as a preprocessing step before computing an equilibrium
■ Some games are solvable using this technique - those games are dominance solvable

Iterated Removal of Strictly Dominated Strategies

- This process preserves Nash equilibria

■ It can be used as a preprocessing step before computing an equilibrium
■ Some games are solvable using this technique - those games are dominance solvable

■ What about the order of removal when there are multiple strictly dominated strategies?

- doesn't matter

Weakly Dominated Strategies

Definition

A strategy $s_{i} \in S_{i}$ is weakly dominated by $s_{i}^{\prime} \in S_{i}$ if
$u_{i}\left(s_{i}, s_{-i}\right) \leq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{-i} \in S_{-i}$, and
$u_{i}\left(s_{i}, s_{-i}\right)<u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for some $s_{-i} \in S_{-i}$

■ Can remove them iteratively too, but:

Weakly Dominated Strategies

- They can be best replies.
- Order of removal can matter.
- At least one equilibrium preserved.

First-price Auction

- You have cool $\$ 50$ million With all this cash on hand.
- An auction house is selling an Andy Warhol piece.
- The rules are that all interested parties must submit a written bid and whoever submits the highest bid wins the Warhol piece and pays a price equal to the bid. This known as the first-price auction.

First-price Auction (cont'd)

- The Warhol piece is worth $\$ 400,000$ to you.

■ You've just learned that there is only one other bidder: your old college friend.

- The Warhol piece is worth $\$ 300,000$ to your college, and furthermore.
- The auctioneer announces that bids must be in increments of $\$ 100,000$ and that the minimum bid is $\$ 100,000$ and the maximum bid is $\$ 500,000$.

First-price Auction (cont'd)

- If the bids are equal, the auctioneer flips a coin to determine the winner (payoffs are in hundreds of thousands of dollar).
- For example, if you bid 3 and she bids 1 , then you win the auction, pay a price of 3 , and receive a payoff of $1(=4-3)$.
- If you both bid 1 , then you have a 50% chance of being the winner- in which case your payoff is 3 (from paying a price of 1)—and a 50% chance that you're not the winner- in which case your payoff is zero; the expected payoff is then $\frac{3}{2}$.

	1	2	3	4	5
1	$\frac{3}{2}, 1$	0,1	0,0	$0,-1$	$0,-2$
2	2,0	$1, \frac{1}{2}$	0,0	$0,-1$	$0,-2$
3	1,0	1,0	$\frac{1}{2}, 0$	$0,-1$	$0,-2$
4	0,0	0,0	0,0	$0,-\frac{1}{2}$	$0,-2$
5	$-1,0$	$-1,0$	$-1,0$	$-1,0$	$-\frac{1}{2},-1$

Table: The strategic form of the first-price auction

First-price Auction (cont'd)

- Bidding 5 is strictly dominated by bidding 4. clearly you don't want to bid that much.

■ You probably don't want to bid 4 since that is weakly dominated by any lower bid.

Your College						
$\stackrel{\rightharpoonup}{\mathrm{O}}$		1	2	3	4	5
	1	$\frac{3}{2}, 1$	0,1	0,0	0,-1	0,-2
	2	2,0	1, $\frac{1}{2}$	0,0	0,-1	0,-2
	3	1,0	1,0	$\frac{1}{2}, 0$	0,-1	0,-2
	4	0,0	0,0	0,0	0,- $\frac{1}{2}$	0,-2
	5	-1,0	-1,0	-1,0	-1,0	- $\frac{1}{2},-1$

Table: The strategic form of the first-price auction

First-price Auction (cont'd)

- The minimum bid of 1 is also weakly dominated.
- We eliminat bids 1, 4 and 5 because they are either strictly or weakly dominated.
■ Can we say more? Unfortunately, no

Your College						
1 2 3 4 5 1 $\frac{3}{2}, 1$ 0,1 0,0 $0,-1$ $0,-2$ 2 2,0 $1, \frac{1}{2}$ 0,0 $0,-1$ $0,-2$ 3 1,0 1,0 $\frac{1}{2}, 0$ $0,-1$ $0,-2$ 4 0,0 0,0 0,0 $0,-\frac{1}{2}$ $0,-2$ 5 $-1,0$ $-1,0$ $-1,0$ $-1,0$ $-\frac{1}{2},-1$						

- Either a bid of 2 or 3 may be best, depending on what the other bidder submits.

Summary: Iterative Strict and Rationality

■ Players maximize their payoffs.

- They don't play strictly dominated strategies
- They don't play strictly dominated strategies, given what remains...
- Nash equilibria are a subset of what remains

■ Do we see such behavior in reality?

Feeding Behavior among Pigs and Iterated Strict Dominance

■ Experiment by B.A. Baldwin and G.B. Meese (1979) "Social Behavior in Pigs Studied by Means of Operant Conditioning," Animal Behavior, Vol 27, pp 947-957. (See also J. Harrington (2011) Games, Strategies and Decision Making, Worth Publishers).

■ Two pigs in cage, one is larger: "dominant" (sorry for the terminology...).

■ Need to press a lever to get food to arive
■ Food and lever are at opposite sides of cage
■ Run to press and the other pig gets the food...

Feeding Behavior among Pigs and Iterated Strict Dominance

■ 10 units of food- the typical split:

- if large gets to food first, then 1,9 split (1 for small, 9 for large),
- if small gets to food first then 4, 6 split,

■ if they get to food at the same time then 3,7 split,

- Pressing the lever costs 2 units of food in energy

Small/Large	Press	Wait
Press	1,5	$-1,9$
Wait	4,4	0,0

Let us solve via iterative elimination of strictly dominated strategies

Small/Large	Press	Wait
Press	1,5	$-1,9$
Wait	4,4	0,0

Pigs Behavior: Frequency of pushing the lever per 15 minutes, after ten tests (learning...) Baldwin and Meese (1979)

■ Experiment was devised by Bladwin and Meese.

- It has two domestic pigs:
- One is the dominate \& the other is the subordinate.
- Which pig will press the lever and run and which will be sitting by the food?

	Alone	Together
LargePigs	75	105
SmallPigs	70	5

Iterative Strict Dominance

- Are pigs rational? Do they know game theory?
- They do seem to learn and respond to incentives

■ Learn not to play a strictly dominated strategy ...
■ Learn not to play a strictly dominated strategies out of what remains...

- Learning, evolution, and survival of the fittest: powerful game theory tools

Maxmin Strategies

■ Player i's minmax strategy is a strategy that maximizes i's worst-case payoff, in the situation where all the other players (whom we denote $-i$) happen to play the strategies which cause the greatest harm to i.

- The maxmin value (or safety level) of the game for player i is that minimum payoff guaranteed by a maxmin strategy.

Definition (Maxmin)

The maxmin strategy for player i is $\arg \max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$, and the maxmin value for player i is $\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$

- Why would i want to play a maxmin strategy?

Maxmin Strategies

■ Player i's minmax strategy is a strategy that maximizes i's worst-case payoff, in the situation where all the other players (whom we denote $-i$) happen to play the strategies which cause the greatest harm to i.

- The maxmin value (or safety level) of the game for player i is that minimum payoff guaranteed by a maxmin strategy.

Definition (Maxmin)

The maxmin strategy for player i is $\arg \max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$, and the maxmin value for player i is $\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$

- Why would i want to play a maxmin strategy?
- a conservative agent maximizing worst-case payoff
- paranoid agent who believes everyone is out to get him

Minmax Strategies

■ Player i's minmax strategy against player $-i$ in a $2-$ player game is a strategy that minimizes - i 's best-case payoff, and the minmax value for i against $-i$ is payoff.

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player i against player -i is arg $\min _{s_{i}} \max _{s_{-i}} u_{i}\left(s_{i}, s_{-i}\right)$, and player -i's minmax value is $\min _{s_{i}} \max _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$.

■ Why would i want to play a minmax strategy?

Minmax Strategies

■ Player i's minmax strategy against player $-i$ in a $2-$ player game is a strategy that minimizes - i 's best-case payoff, and the minmax value for i against $-i$ is payoff.

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player i against player -i is arg $\min _{s_{i}} \max _{s_{-i}} u_{i}\left(s_{i}, s_{-i}\right)$, and player -i's minmax value is $\min _{s_{i}} \max _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$.

- Why would i want to play a minmax strategy?
- to punish the other agent as much as possible

Minmax Theorem

Theorem (Minmax, von Neumann, 1928)

In any finite, 2-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

1. Each player's maxmin value is equal to his minmax value. The maxmin value for player 1 is called the value of the game.

Minmax Theorem

Theorem (Minmax, von Neumann, 1928)

In any finite, 2-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

1. Each player's maxmin value is equal to his minmax value. The maxmin value for player 1 is called the value of the game.
2. For both players, the set of maxmin strategies coincides with the set of minmax strategies.

Minmax Theorem

Theorem (Minmax, von Neumann, 1928)

In any finite, 2-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

1. Each player's maxmin value is equal to his minmax value. The maxmin value for player 1 is called the value of the game.
2. For both players, the set of maxmin strategies coincides with the set of minmax strategies.
3. Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a Nash equilibrium. Furthermore, these are all the Nash equilibria. Consequently, all Nash equilibria have the same payoff vector (namely, those in which player 1 gets the value of the game).

Minmax Theorem (cont'd)

Theorem (Minmax, von Neumann, 1928)

In any finite, 2-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

Proof:

We consider a game with two players.
\checkmark Player 1 make choice $k \in\{1, \ldots, n\} \quad \& \quad$ Palyer 2 make choice $I \in\{1, \ldots, m\}$
\checkmark Player 1 then makes a payment of $P_{k l}$ to Player 2 where $P \in R^{n \times m}$ is payoff matrix for game.
The goal of player 1 is to make the payment as small as possible, while the goal of player 2 is to maximize it.
\checkmark The players use randomized or mixed strategies

$$
\operatorname{prob}(k=i)=u_{i}, \quad i=1, \ldots, n \quad \& \quad \operatorname{prob}(I=i)=v_{i} \quad i=1, \ldots, m
$$

\checkmark The expected payoff from player 1 to player 2 is $\sum_{k=1}^{n} \sum_{l=1}^{m} u_{k} v_{l} P_{k l}$
Player 1 wishes to choose u to minimize $u^{T} P v$, while player 2 wishes to choose v to maximize $u^{T} P v$.
$\checkmark \ldots \quad$ minimize $\max _{i=1, \ldots, m}\left(P^{T} u\right)_{i}=$ maximize $\min _{i=1, \ldots, n}\left(P^{T} v\right)_{i}$
s.t.
$u \succeq 0, \quad 1^{T} u=1$
s.t. $\quad v \succeq 0$,
$1^{T} v=1$

2×2 Zero-sum Games

- Minmax or maxmin produces the same result as method for finding NE in general 2×2 games;

■ Check against penalty kick game.

Penalty Kick Game

■ How does the kicker maximize his minimum?

Penalty Kick Game

Goalie

Kicker

	L	R
L	$0.6,0.4$	$0.8,0.2$
R	$0.9,0.1$	$0.7,0.3$

■ How does the kicker maximize his minimum?

$$
\max _{s_{1}} \min _{s_{2}}\left[s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L) s_{2}(R) \times 0.8+s_{1}(R) s_{2}(L) \times 0.9+s_{1}(R) s_{2}(R) \times 0.7\right]
$$

Penalty Kick Game (cont'd)

■ What is his minimum?

Penalty Kick Game (cont'd)

Goalie
Kicker

	L	R
L	$0.6,0.4$	$0.8,0.2$
R	$0.9,0.1$	$0.7,0.3$

■ What is his minimum?

$$
\begin{aligned}
& \min _{s_{2}}\left[s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L) s_{2}(R) \times 0.8+s_{1}(R) s_{2}(L) \times 0.9+s_{1}(R) s_{2}(R) \times 0.7\right] \\
& =\min _{s_{2}}\left[\begin{array}{c}
s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L)\left(1-s_{2}(L)\right) \times 0.8+\left(1-s_{1}(L)\right) s_{2}(L) \times \\
0.9+\left(1-s_{1}(L)\right)\left(1-s_{2}(L)\right) \times 0.7
\end{array}\right]
\end{aligned}
$$

Penalty Kick Game (cont'd)

Goalie
Kicker

	L	R
L	$0.6,0.4$	$0.8,0.2$
R	$0.9,0.1$	$0.7,0.3$

- What is his minimum?

$$
\begin{gathered}
\min _{s_{2}}\left[s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L) s_{2}(R) \times 0.8+s_{1}(R) s_{2}(L) \times 0.9+s_{1}(R) s_{2}(R) \times 0.7\right] \\
=\min _{s_{2}}\left[\begin{array}{c}
s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L)\left(1-s_{2}(L)\right) \times 0.8+\left(1-s_{1}(L)\right) s_{2}(L) \times \\
0.9+\left(1-s_{1}(L)\right)\left(1-s_{2}(L)\right) \times 0.7
\end{array}\right] \\
=\min _{s_{2}}\left[\left(0.2-s_{1}(L) \times 0.4\right) \times s_{2}(L)+\left(0.7+s_{1}(L) \times 0.1\right)\right]
\end{gathered}
$$

Penalty Kick Game (cont'd)

Goalie
Kicker

	L	R
L	$0.6,0.4$	$0.8,0.2$
R	$0.9,0.1$	$0.7,0.3$

- What is his minimum?

$$
\begin{gather*}
\min _{s_{2}}\left[s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L) s_{2}(R) \times 0.8+s_{1}(R) s_{2}(L) \times 0.9+s_{1}(R) s_{2}(R) \times 0.7\right] \\
=\min _{s_{2}}\left[\begin{array}{c}
s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L)\left(1-s_{2}(L)\right) \times 0.8+\left(1-s_{1}(L)\right) s_{2}(L) \times \\
0.9+\left(1-s_{1}(L)\right)\left(1-s_{2}(L)\right) \times 0.7
\end{array}\right] \\
=\min _{s_{2}}\left[\left(0.2-s_{1}(L) \times 0.4\right) \times s_{2}(L)+\left(0.7+s_{1}(L) \times 0.1\right)\right] \\
\Rightarrow 0.2-s_{1}(L) \times 0.4=0 \\
\Rightarrow s_{1}(L)=\frac{1}{2}, \quad s_{1}(R)=\frac{1}{2}
\end{gather*}
$$

Penalty Kick Game (cont'd)

Goalie			
Kicker	L	R	
	L	$0.6,0.4$	$0.8,0.2$
	R	$0.9,0.1$	$0.7,0.3$

■ How does the goalie minimize the kicker's maximum?

Penalty Kick Game (cont'd)

Goalie			
Kicker	L	R	
	L	$0.6,0.4$	$0.8,0.2$
	R	$0.9,0.1$	$0.7,0.3$

■ How does the goalie minimize the kicker's maximum?

$$
\min _{s_{2}} \max _{s_{1}}\left[s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L) s_{2}(R) \times 0.8+s_{1}(R) s_{2}(L) \times 0.9+s_{1}(R) s_{2}(R) \times 0.7\right]
$$

Penalty Kick Game (cont'd)

■ What is the kicker's maximum?

Penalty Kick Game (cont'd)

Goalie

Kicker

	L	R
L	$0.6,0.4$	$0.8,0.2$
R	$0.9,0.1$	$0.7,0.3$

- What is the kicker's maximum?

$$
\begin{aligned}
& \max _{s_{1}}\left[s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L) s_{2}(R) \times 0.8+s_{1}(R) s_{2}(L) \times 0.9+s_{1}(R) s_{2}(R) \times 0.7\right] \\
& =\max _{s_{1}}\left[\begin{array}{c}
s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L)\left(1-s_{2}(L)\right) \times 0.8+\left(1-s_{1}(L)\right) s_{2}(L) \times 0.9 \\
+\left(1-s_{1}(L)\right)\left(1-s_{2}(L)\right) \times 0.7
\end{array}\right]
\end{aligned}
$$

Penalty Kick Game (cont'd)

Goalie

Kicker

	L	R
L	$0.6,0.4$	$0.8,0.2$
R	$0.9,0.1$	$0.7,0.3$

■ What is the kicker's maximum?

$$
\begin{gathered}
\max _{s_{1}}\left[s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L) s_{2}(R) \times 0.8+s_{1}(R) s_{2}(L) \times 0.9+s_{1}(R) s_{2}(R) \times 0.7\right] \\
=\max _{s_{1}}\left[\begin{array}{c}
s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L)\left(1-s_{2}(L)\right) \times 0.8+\left(1-s_{1}(L)\right) s_{2}(L) \times 0.9 \\
+\left(1-s_{1}(L)\right)\left(1-s_{2}(L)\right) \times 0.7
\end{array}\right] \\
=\max _{s_{1}}\left[\left(0.1-s_{2}(L) \times 0.4\right) \times s_{1}(L)+\left(0.7+s_{2}(L) \times 0.2\right)\right]
\end{gathered}
$$

Penalty Kick Game (cont'd)

Goalie

Kicker

	L	R
L	$0.6,0.4$	$0.8,0.2$
R	$0.9,0.1$	$0.7,0.3$

■ What is the kicker's maximum?

$$
\begin{gathered}
\max _{s_{1}}\left[s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L) s_{2}(R) \times 0.8+s_{1}(R) s_{2}(L) \times 0.9+s_{1}(R) s_{2}(R) \times 0.7\right] \\
=\max _{s_{1}}\left[\begin{array}{c}
\left.s_{1}(L) s_{2}(L) \times 0.6+s_{1}(L)\left(1-s_{2}(L)\right) \times 0.8+\left(1-s_{1}(L)\right) s_{2}(L) \times 0.9\right] \\
+\left(1-s_{1}(L)\right)\left(1-s_{2}(L)\right) \times 0.7
\end{array}\right. \\
=\max _{s_{1}}\left[\left(0.1-s_{2}(L) \times 0.4\right) \times s_{1}(L)+\left(0.7+s_{2}(L) \times 0.2\right)\right] \\
\Rightarrow 0.1-s_{2}(L) \times 0.4=0 \\
\Rightarrow s_{2}(L)=\frac{1}{4}, \quad s_{2}(R)=\frac{3}{4}
\end{gathered}
$$

Computing Minmax

- For 2 players minmax is solvable with LP (Linear Programming).

$$
\begin{aligned}
\operatorname{minimize} & t \\
\text { subject to } & u \succeq 0, \quad 1^{T} u=1 \\
& P^{T} u \succeq t 1
\end{aligned}
$$

Correlated Equilibrium: Intuition

- Correlated Equilibrium (informal): a randomized assignment of (potentially correlated) action recommendations to agents, such that nobody wants to deviate.
- In a Nash equilibrium, the probability that player I plays i and player II plays j is the product of the two corresponding probabilities (in this case $p_{i} q_{j}$), whereas a correlated equilibrium puts a probability, say $z_{i j}$, on each pair (i, j) of strategies.

Correlated Equilibrium: Example

- Consider again Battle of the Sexes
- In this game, there are two pure Nash equilibria (F, F), (B, B).
- There is also a mixed Nash equilibrium yields each player an expected payoff of $\frac{2}{3}$.
■ How might this couple decide between the two pure Nash equilibria?
- Intuitively, the best outcome seems a

	B	F
B	2,1	0,0
F	0,0	1,2

■ The expected payoff to each player in this so-called correlated equilibrium is

$$
0.5 * 2+0.5 * 1=1.5
$$

Correlated Equilibrium: Example (cont'd)

- What is the natural solution here?
- A traffic light: a fair randomizing device that tells one of the agents to go and the other to wait.
- We could use the same idea to achieve the fair outcome in battle of the sexes.
- Benefits:

	go	wait
go	$-10,-10$	1,0
wait	0,1	$-1,-1$

- the negative payoff outcomes are completely avoided
- fairness is achieved
- the sum of social welfare can exceed that of any Nash equilibrium

