Game Theory - Week 5

Mojtaba Tefagh

Sharif University of Technology

mtefagh@sharif.edu

December 12, 2022

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Mojtaba Tefagh

Overview

- Repeated games
- Infinitely Repeated Games: Utility
- Stochastic Games
- Learning in Repeated Games
- Equilibria of Infinitely Repeated Games
- Discounted Repeated Games
- A Folk Theorem for Discounted Repeated Games

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つので

Many (most?) interactions occur more than once:

- Firms in a marketplace
- Political alliances
- Friends (favor exchange...)
- Workers (team production...)

- OPEC: Oil Prices
 - 20\$/bbl or less from 1930-1973 (2008 dollars)
 - 50\$/bbl by 1976
 - 90\$/bbl by 1982
 - 40\$/bbl or less from 1986 to 2002
 - 100\$/bbl by late 2008 ...

 Cooperative Behavior: Cartel is much like a repeated Prisoner's Dilemma

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

- Cooperative Behavior: Cartel is much like a repeated Prisoner's Dilemma
 - Need to easily observe each other's plays and react (quickly) to punish undesired behavior

- Cooperative Behavior: Cartel is much like a repeated Prisoner's Dilemma
 - Need to easily observe each other's plays and react (quickly) to punish undesired behavior
 - Need patient players who value the long run (wars don't help!)

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つので

- Cooperative Behavior: Cartel is much like a repeated Prisoner's Dilemma
 - Need to easily observe each other's plays and react (quickly) to punish undesired behavior
 - Need patient players who value the long run (wars don't help!)
 - Need a stable set of players and some stationarity helps
 - constantly changing sources of production can hurt, but growing demand can help ...

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つので

Infinitely Repeated Games

What is a player's utility for playing an infinitely repeated game?

Can we write it in extensive form?

Infinitely Repeated Games

What is a player's utility for playing an infinitely repeated game?

- Can we write it in extensive form?
- The sum of payoffs in the stage game?

Definition

Given an infinite sequence of payoffs r_1, r_2, \ldots for player *i*, the average reward of *i* is

$$\lim_{k\to\infty}\sum_{j=1}^k\frac{r_j}{k}$$

イロト 不得 トイヨト イヨト 二日

Discounted reward Definition

Definition

Given an infinite sequence of payoffs $r_1, r_2, ...$ for player *i* and discount factor β with $0 < \beta < 1$, i's future discounted reward is

<ロ> <四> <四> <四> <三</p>

Discounted reward Definition

Definition

Given an infinite sequence of payoffs $r_1, r_2, ...$ for player *i* and discount factor β with $0 < \beta < 1$, i's future discounted reward is

$$\sum_{j=1}^{\infty} \beta^j r_j$$

 Two equivalent interpretations of the discount factor:
 1. the agent cares more about his well-being in the near term than in the long term

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Discounted reward Definition

Definition

Given an infinite sequence of payoffs $r_1, r_2, ...$ for player *i* and discount factor β with $0 < \beta < 1$, i's future discounted reward is

$$\sum_{j=1}^{\infty} \beta^j r_j$$

- Two equivalent interpretations of the discount factor:
 - 1. the agent cares more about his well-being in the near term than in the long term
 - 2. the agent cares about the future just as much as the present, but with probability 1β the game will end in any given round.

Stochastic Games- Introduction

What if we didn't always repeat back to the same stage game?

- A stochastic game is a generalization of repeated games
 - agents repeatedly play games from a set of normal-form games
 - the game played at any iteration depends on the previous game played and on the actions taken by all agents in that game

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つので

Stochastic Games- Visualization

An informal visualization of the difference between repeated and stochastic games.

・ロト ・回ト ・ヨト ・ヨト

Mojtaba Tefagh

Stochastic Games- Formal Definition

Definition

- A repeated games is a tuple (Q, N, A, P, R), where
 - Q is a finite set of states,
 - *N* is a finite set of *n* players,
 - $A = A_1 \times \cdots \times A_n$, where A_i is a finite set of actions available to player *i*,
 - P: Q × A × Q → [0, 1] is the transition probability function; P(q, a, ĝ) is the probability of transitioning from state q to state ĝ after joint action a, and
 - $R = r_1, \ldots, r_n$, where $r_i : Q \times A \rightarrow \mathbb{R}$ is a real-valued payoff function for player i.

Stochastic Games- Remarks

- This definition assumes strategy space is the same in all games
 - otherwise just more notation

- Also generalizes MDP (Markov Decision Process)
 - i.e. MDP is a single-agent stochastic game

Stochastic Games- Analysis

Can do analysis as with repeated games.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

- limit average reward
- future discount reward

Introduction

We will cover two types of learning in repeated games.

- Fictitious Play
- No-regret Learning

 In general Learning in Game Theory is a rich subject with many facets we will not be covering.

Fictitious Play

- Initially proposed as a method for computing Nash equilibrium.
- Each player maintains explicit belief about the other players.
 Initialize beliefs about the opponent's strategies.
 - Each turn:
 - Play a best response to the assessed strategy of the opponent.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つので

 Observe the opponent's actual play and update beliefs accordingly.

Fictitious Play

Formally

- Maintain counts of opponents actions
 - For every $a \in A$ let $\omega(a)$ be the number of times the opponent has player action a.
 - Can be initialized to non-zero starting values.
- Assess opponent's strategy using these counts:

$$\sigma(\mathbf{a}) = rac{\omega(\mathbf{a})}{\sum_{\mathbf{a}' \in \mathcal{A}} \omega(\mathbf{a}')}$$

- (pure strategy) best respond to this assessed strategy.
 - Break ties somehow.

イロト 不得 トイヨト イヨト 二日

Fictitious Play

Example using matching pennies

Round	l's action	2's action	l's beliefs	2's beliefs
0			(1.5,2)	(2,1.5)
1	Т	Т	(1.5,3)	(2,2.5)
2	Т	н	(2.5,3)	(2,3.5)
3	Т	н	(3.5,3)	(2,4.5)
4	н	н	(4.5,3)	(3,4.5)
5	н	н	(5.5,3)	(4,4.5)
6	н	н	(6.5,3)	(5,4.5)
7	Н	т	(6.5,4)	(6,4.5)
:	:	:	:	:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Fictitious Play- Convergence

Theorem

If the empirical distribution of each player's strategies converges in fictitious play, then it converges to a Nash equilibrium.

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Fictitious Play- Convergence

Theorem

If the empirical distribution of each player's strategies converges in fictitious play, then it converges to a Nash equilibrium.

Theorem

Each of the following are a sufficient conditions for the empirical frequencies of play to converge in fictitious play:

- The game is zero sum;
- The game is solvable by iterated elimination of strictly dominated strategies;
- The game is a potential game;
- The game is 2 × n and has generic payoffs.

No-regret Learning- Definitions

Definition (Regret)

The regret an agent experiences at time t for not having played s is $R^t(s) = max(\alpha^t(s) - \alpha^t, 0).$

No-regret Learning- Definitions

Definition (Regret)

The regret an agent experiences at time t for not having played s is $R^{t}(s) = max(\alpha^{t}(s) - \alpha^{t}, 0).$

Definition (No-regret learning rule)

A learning rule exhibits no regret if for any pure strategy of the agent s it holds that $Pr([\liminf R^t(s)] \le 0) = 1$.

Mojtaba Tefagh

No-regret Learning- Regret Matching

 Example learning rule that exhibits no regret: Regret Matching.

No-regret Learning- Regret Matching

- Example learning rule that exhibits no regret: Regret Matching.
- At each time step each action is chosen with probability proportional to its regret. That is,

$$\sigma_i^{t+1}(s) = \frac{R^t(s)}{\sum_{s' \in S_i} R^t(s')}$$

where $\sigma_i^{t+1}(s)$ is the probability that agent i plays pure strategy s at time t + 1.

Converges to a correlated equilibrium for finite games.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Strategy Space

• What is a pure strategy in an infinitely-repeated game?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Strategy Space

- What is a pure strategy in an infinitely-repeated game?
 - a choice of action at every decision point
 - here, that means an action at every stage game
 - ...which is an infinite number of actions!
- Some famous strategies (repeated PD):
 - Tit-for-tat: Start out cooperating. If the opponent defected, defect in the next round. Then go back to cooperation.
 - Trigger: Start out cooperating. If the opponent ever defects, defect forever.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つので

Nash Equilibria

- With an infinite number of pure strategies, what can we say about Nash equilibria?
 - we won't be able to construct an induced normal form and then appeal to Nash's theorem to say that an equilibrium exists
 - Nash's theorem only applies to finite games
- Furthermore, with an infinite number of strategies, there could be an infinite number of pure-strategy equilibria!
- We can characterize a set of payoffs that are achievable under equilibrium, without having to enumerate the equilibria.

Definitions

- Consider any n-player game G = (N, A, u) and any payoff vector r = (r₁, r₂, ..., r_n).
- Let $v_i = \min_{s_{-i} \in S_{-i}} \max_{s_i \in S_i} u_i(s_{-i}, s_i).$
 - i's minmax value: the amount of utility i can get when −i play a minmax strategy against him

Definition

A payoff profile r is enforceable if $r_i \ge v_i$.

Definition

A payoff profile r is feasible if there exist rational, non-negative values $\alpha_{\textbf{a}}$ such that for all i, we can express r_i as $\sum_{a\in A}\alpha_a u_i(a)$, with $\sum_{a\in A}\alpha_a=1$

■ feasible: a convex, rational combination of the outcomes in G.

Folk Theorem

Theorem (Folk Theorem)

Consider any n-player game G and any payoff vector $(r_1, r_2, ..., r_n)$.

- 1. If r is the payoff in any Nash equilibrium of the infinitely repeated G with average rewards, then for each player i, r_i is enforceable.
- 2. If r is both feasible and enforceable, then r is the payoff in some Nash equilibrium of the infinitely repeated G with average rewards.

イロト 不得 トイヨト イヨト

Payoff in Nash \implies enforceable

Part 1: Suppose r is not enforceable, i.e. $r_i < v_i$ for some i.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Mojtaba Tefagh

Payoff in Nash \implies enforceable

Part 1: Suppose r is not enforceable, i.e. $r_i < v_i$ for some i. Then consider a deviation of this player i to $b_i(s_{-i}(h))$ for any history h of the repeated game, where b_i is any best-response action in the stage game and $s_{-i}(h)$ is the strategy of other players given the current history h.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = ● ●

Payoff in Nash \implies enforceable

Part 1: Suppose r is not enforceable, i.e. $r_i < v_i$ for some i. Then consider a deviation of this player i to $b_i(s_{-i}(h))$ for any history h of the repeated game, where b_i is any best-response action in the stage game and $s_{-i}(h)$ is the strategy of other players given the current history h. By definition of a minmax strategy, player i will receive a payoff of at least v_i in every stage game if he adopts this strategy, and so i's average reward is also at least v_i . Thus i cannot receive the payoff $r_i < v_i$ in any Nash equilibrium.

Feasible and enforceable \implies Nash

Part 2: Since r is a feasible payoff profile and the α 's are rational, we can write it as $r_i = \sum_{a \in A} \left(\frac{\beta_{\alpha}}{\gamma}\right) u_i(a)$, where β_{α} and γ are non-negative integers and $\gamma = \sum_{a \in A} \beta_{\alpha}$.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへで

Feasible and enforceable \implies Nash

Part 2: Since r is a feasible payoff profile and the α 's are rational, we can write it as $r_i = \sum_{a \in A} (\frac{\beta_\alpha}{\gamma}) u_i(a)$, where β_α and γ are non-negative integers and $\gamma = \sum_{a \in A} \beta_\alpha$. We're going to construct a strategy profile that will cycle through all outcomes $a \in A$ of G with cycles of length γ , each cycle repeating action a exactly β_α times. Let (a^t) be such a sequence of outcomes.

Feasible and enforceable \implies Nash

Part 2: Since r is a feasible payoff profile and the α 's are rational, we can write it as $r_i = \sum_{a \in A} (\frac{\beta_\alpha}{\gamma}) u_i(a)$, where β_α and γ are non-negative integers and $\gamma = \sum_{a \in A} \beta_\alpha$. We're going to construct a strategy profile that will cycle through all outcomes $a \in A$ of G with cycles of length γ , each cycle repeating action a exactly β_α times. Let (a^t) be such a sequence of outcomes.Let's define a strategy s_i of player i to be a trigger version of playing (a^t) : if nobody deviates, then s_i plays a_i^t in period t.

Feasible and enforceable \implies Nash

Part 2: Since r is a feasible payoff profile and the α 's are rational, we can write it as $r_i=\sum_{a\in A}(\frac{\beta_\alpha}{\gamma})u_i(a)$, where β_α and γ are non-negative integers and $\gamma = \sum_{\alpha \in \Lambda} \beta_{\alpha}$. We're going to construct a strategy profile that will cycle through all outcomes $a \in A$ of G with cycles of length γ , each cycle repeating action a exactly β_{α} times. Let (a^t) be such a sequence of outcomes.Let's define a strategy s_i of player i to be a trigger version of playing (a^t) : if nobody deviates, then s_i plays a_i^t in period t. However, if there was a period t in which some player $j \neq i$ deviated, then s_i will play (p_{-i}) , where (p_{-i}) is a solution to the minimization problem in the definition of v_i .

Feasible and enforceable \implies Nash

First observe that if everybody plays according to s_i , then, by construction, player i receives average payoff of r_i (look at averages over periods of length γ). Second, this strategy profile is a Nash equilibrium. Suppose everybody plays according to s_i , and player j deviates at some point. Then, forever after, player j will receive his minmax payoff $v_j \leq r_j$, rendering the deviation unprofitable.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = ● ●

Discounted Repeated Games

- The future is uncertain, we are often motivated by what happens today
- Tradeoffs of today and the future are important in how I will behave today
- Will people punish me if I misbehave today?
 - Is it in their interest?
 - Do I care?

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○

Discounted Repeated Games

- Stage game: (N, A, u)
- Discount factors: $\beta_1, \ldots, \beta_n, \beta_i \in [0, 1]$
- Assume a common discount factor for now: $\beta_i = \beta$ for all i
- \blacksquare Payoff from a play of actions a^1,\ldots,a^t,\cdots :

$$\sum_{t} \beta_{i}^{t} u_{i}(a^{t})$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Histories

• Histories of length $t: H^t = \{h^t: h^t = (a^1, \dots, a^t) \in A^t\}$

• All finite histories: $H = \bigcup_t H^t$

• A strategy:
$$s_i : H \rightarrow \Delta(A_i)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Prisoners Dilemma

 $\bullet \ A_i = \{C, D\}$

- A history for three periods: (C, C), (C, D), (D, D)
- A strategy for period 4 would specify what a player would do after seeing (C, C), (C, D), (D, D) played in the first three periods ...

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへで

Subgame Perfection

Profile of strategies that are Nash in every subgame

So, a Nash equilibrium following every possible history

 Repeatedly playing a Nash equilibrium of the stage game is always a subgame perfect equilibrium of the repeated game (Stop and check this!)

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = ● ●

- Cooperate as long as everyone has in the past
- Both players defect forever after if anyone ever deviates: Grim Trigger

	С	D
С	3,3	0,5
D	5,0	1,1

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへで

Let's check that nobody wants to deviate if everyone has cooperated in the past:

• Cooperate:
$$3 + \beta 3 + \beta^2 3 + \beta^3 3 \cdots = \frac{3}{1-\beta}$$

• Defect:
$$5 + \beta 1 + \beta^2 1 + \beta^3 1 \dots = 5 + \beta \frac{1}{1-\beta}$$

	С	D
С	3,3	0,5
D	5,0	1,1

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへで

- Let's check that nobody wants to deviate if everyone has cooperated in the past:
- Cooperate: $3 + \beta 3 + \beta^2 3 + \beta^3 3 \cdots = \frac{3}{1-\beta}$
- Defect: $5 + \beta 1 + \beta^2 1 + \beta^3 1 \dots = 5 + \beta \frac{1}{1-\beta}$
- Difference: $-2 + \beta 2 + \beta^2 2 + \beta^3 2 \cdots = \beta \frac{2}{1-\beta} 2$
- Difference is nonnegative if $\beta \frac{2}{1-\beta} 2 \ge 0$ or $\beta \ge (1-\beta)$, so $\beta \ge \frac{1}{2}$
- Need to care about tomorrow at least half as much as today!

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○

• What if we make defection more attractive:

	С	D
с	3,3	0,10
D	10,0	1,1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

- Let's check that nobody wants to deviate if everyone has cooperated in the past:
- Cooperate: $3 + \beta 3 + \beta^2 3 + \beta^3 3 \cdots = \frac{3}{1-\beta}$
- Defect: $10 + \beta 1 + \beta^2 1 + \beta^3 1 \dots = 10 + \beta \frac{1}{1-\beta}$
- Difference: $-7 + \beta 2 + \beta^2 2 + \beta^3 2 \cdots = \beta \frac{2}{1-\beta} 7$
- Difference is nonnegative if $\beta \frac{2}{1-\beta} 7 \ge 0$ or $2\beta \ge 7(1-\beta)$, so $\beta \ge \frac{7}{9}$
- Need to care about tomorrow at least 7/9 as much as today!

Discounted Repeated Games

Basic logic:

- Play something with relatively high payoffs, and if anyone deviates
- Punish by resorting to something that
 - has lower payoffs (at least for that player)
 - and is credible: it is an equilibrium in the subgame.

- Consider a finite normal form game G = (N, A, u).
- Let $a = (a_1, ..., a_n)$ be a Nash equilibrium of the stage game G
- If $a = (a_1, \ldots, a'_n)$ is such that $u_i(a) > u_i(a)$ for all i, then there exists a discount factor $\beta < 1$, such that if $\beta_i \ge \beta$ for all i, then there exists a subgame perfect equilibrium of the infinite repetition of G that has a' played in every period on the equilibrium path.

- Outline of the Proof:
- \blacksquare Play a^{\prime} as long as everyone has in the past.
- If any player ever deviates, then play a forever after (Grim Trigger).
- Check that this is a subgame perfect equilibrium for high enough discount factors:

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つので

Check that this is a subgame perfect equilibrium for high enough discount factors:

イロト 不得 トイヨト イヨト 二日

- Check that this is a subgame perfect equilibrium for high enough discount factors:
 - Playing a forever if anyone has deviated is a Nash equilibrium in any such subgame.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つので

- Check that this is a subgame perfect equilibrium for high enough discount factors:
 - Playing a forever if anyone has deviated is a Nash equilibrium in any such subgame.
 - Will someone gain by deviating from a if nobody has in the past?
 - Maximum gain from deviating is $M = \max_{i,a_i''} u_i(a_i'',a_i') u_i(a')$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つので

- Check that this is a subgame perfect equilibrium for high enough discount factors:
 - Playing a forever if anyone has deviated is a Nash equilibrium in any such subgame.
 - Will someone gain by deviating from a if nobody has in the past?
 - \blacksquare Maximum gain from deviating is $M = \max_{i,a_i^{\prime\prime}} u_i(a_i^{\prime\prime},a_i^{\prime}) u_i(a^{\prime})$
 - minimum per-period loss from future punishment is $m = \min_i u_i(a^{'}) u_i(a)$ (why this?)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- Check that this is a subgame perfect equilibrium for high enough discount factors:
 - Playing a forever if anyone has deviated is a Nash equilibrium in any such subgame.
 - Will someone gain by deviating from a if nobody has in the past?
 - \blacksquare Maximum gain from deviating is $M = \max_{i,a_i^{\prime\prime}} u_i(a_i^{\prime\prime},a_i^{\prime}) u_i(a^{\prime})$
 - minimum per-period loss from future punishment is $m = \min_i u_i(a^{'}) u_i(a)$ (why this?)
 - If deviate, then given other players' strategies, the maximum possible net gain is $M-m\frac{\beta_i}{1-\beta_i}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- Check that this is a subgame perfect equilibrium for high enough discount factors:
 - Playing a forever if anyone has deviated is a Nash equilibrium in any such subgame.
 - Will someone gain by deviating from a if nobody has in the past?
 - \blacksquare Maximum gain from deviating is $M = \max_{i,a_i^{\prime\prime}} u_i(a_i^{\prime\prime},a_i^{\prime}) u_i(a^{\prime})$
 - minimum per-period loss from future punishment is $m = \min_i u_i(a^{'}) u_i(a)$ (why this?)
 - If deviate, then given other players' strategies, the maximum possible net gain is $M-m\frac{\beta_i}{1-\beta_i}$

• Deviation is not beneficial if $\frac{M}{m} \leq \frac{\beta_i}{1-\beta_i}$ or $\beta_i \geq \frac{M}{M+m}$ for all i.

More complicated play: something to think about

	С	D	
С	3,3	0,10	
D	10,0	1,1	

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- Players can condition future play on past actions
- Brings in many(!) equilibria: Folk Theorems
- Need key ingredients
 - Some (fast enough) observation about how others behave
 - Sufficient value to the future (limit of the means extreme value) or high enough discount factor

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つので